Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, CM: AD//AB=AE//AC
Xét tam giác ABC có:
AD//AB vì đề bài cho cạnh BC lấy D ( lấy sao cho AD=AB)
AE//AC vì đề bài cho cạnh AC lấy E ( lấy sao cho AE=AC)
VÌ ĐỀU CHUNG MỘT TAM GIÁC NÊN 3 CẠNH = NHAU
\(\Rightarrow\) AD/AB=AE/AC.
b, AB = 2cm vì AD= 2cm( AD//AB \(\Rightarrow=\)nhau và = 2 cm)
a) Ta có :
AB = AE
=> ∆ABE cân tại A
Mà AD là phân giác
=> AD là trung trực ∆ABE (dpcm)
b) Gọi giao điểm AD và BE là O
Xét ∆ABD và ∆AED có :
AD chung
AB = AE (gt)
BAD = CAD (AD là phân giác)
=> ∆ABD = ∆AED (c.g.c)
=> BD = DE ( tương ứng)
Vì AD là trung trực BE (cmt)
=> AD\(\perp\)BE
Mà AD//FE
=> OD //FE ( O \(\in\)AD )
=> FEO + EOD = 180° ( trong cùng phía)
=> FEO = 180° - 90° = 90°
=> ∆BFE vuông tại E
Xét ∆BFE có :
O là trung điểm BE ( O là trung trực BE )
OD//FE (cmt)
=> D là trung điểm BF
=> BD = DF
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Sửa đề: ΔABC cân tại A
a:ΔABC cân tại A
mà AD là đường phân giác
nên AD là đường cao
=>AD vuông góc BC
b: Xét ΔAFI và ΔAEI có
AF=AE
góc FAI=góc EAI
AI chung
=>ΔAFI=ΔAEI
=>góc AFI=góc AEI
=>FI vuông góc AB
c: Xét ΔABC có
BE,AD là đường cao
BE cắt AD tại I
=>I là trực tâm
=>CI vuông góc AB
=>C,I,F thẳng hàng
a) Xét ΔABD và ΔEBD có
BA=BE(gt)
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔABD=ΔEBD(c-g-c)
b) Ta có: ΔABD=ΔEBD(cmt)
nên \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)
mà \(\widehat{BAD}=90^0\)(gt)
nên \(\widehat{BED}=90^0\)
Xét ΔADM vuông tại A và ΔEDC vuông tại E có
DA=DE(ΔABD=ΔEBD)
\(\widehat{ADM}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADM=ΔEDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: AM=EC(Hai cạnh tương ứng)
c) Xét ΔBAE có BA=BE(gt)
nên ΔBAE cân tại B(Định nghĩa tam giác cân)
Suy ra: \(\widehat{BAE}=\widehat{BEA}\)(hai góc ở đáy)
mà \(\widehat{BAE}+\widehat{MAE}=180^0\)(hai góc kề bù)
và \(\widehat{BEA}+\widehat{AEC}=180^0\)(hai góc kề bù)
nên \(\widehat{AEC}=\widehat{EAM}\)