K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2017

A B C M D E F Xét tam giác DMC có:

F trung điểm MD

E trung điểm DC

=> EF là đường TB mà MC là cạnh đáy

=> EF // MC hay EF // BC (1)

Lại có tam giác ABC cân vì AB = BC, có AM trung tuyến => AM là đường cao => AM _|_ BC (2)

Từ (1) và (2) => EF _|_ AM

Xét tam giác AME có:

MD và EF là đường cao

\(MD\)\(\cap\)EF \(=\left\{F\right\}\)

=> F là trực tâm => AF đường cao => AF _|_ ME (3)

Xét tam giác BDC có:

M trung điểm BC

E trung điểm DC

=> ME là đường TB mà BD là cạnh đáy

=> ME = BD (4)

Từ (3) và (4) => AF _|_ BD (đpcm)

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

Do đó:ABDC là hình bình hành

=>AB//CD và AB=CD

b: Xét ΔABD có

AF,BM là trung tuyến

AF cắt BM tại I

=>I là trọng tâm

=>BI=2/3BM=2/3*1/2BC=1/3BC

Xét ΔACD có

DE,CM là trung tuyến

DE cắt CM tại K

Do đó: K là trọng tâm

=>CK=2/3CM=2/3*1/2*BC=1/3BC
c: BI+IK+KC=BC

=>1/3BC+IK+1/3BC=BC

=>IK=1/3BC

=>BI=IK=KC

d: Xét tứ giác AEDF có

AE//DF

AE=DF

Do đó: AEDF là hình bình hành

=>AD cắt EF tại trung điểm của mỗi đường

=>E,M,F thẳng hàng

29 tháng 11 2023

a) Để chứng minh ABDC là hình chữ nhật, ta cần chứng minh rằng các cạnh đối diện của nó bằng nhau và các góc trong của nó bằng 90 độ.

 

Ta có:

- AM là trung tuyến của tam giác ABC, nên AM = MC.

- AM = MD (theo giả thiết), nên MD = MC.

- AH là đường cao của tam giác ABC, nên góc AMH = 90 độ.

 

Vậy ta có AM = MC, MD = MC và góc AMH = 90 độ.

 

Từ đó, ta có thể kết luận rằng ABDC là hình chữ nhật với các cạnh đối diện bằng nhau và các góc trong bằng 90 độ.

 

b) Để chứng minh AEHF là hình vuông, ta cần chứng minh rằng các cạnh của nó bằng nhau và các góc trong của nó bằng 90 độ.

 

Ta có:

- AE là chân đường vuông góc từ H xuống AB, nên góc AEH = 90 độ.

- AF là chân đường vuông góc từ H xuống AC, nên góc AFH = 90 độ.

- AH là đường cao của tam giác ABC, nên góc AMH = 90 độ.

 

Vậy ta có góc AEH = góc AFH = góc AMH = 90 độ.

 

Từ đó, ta có thể kết luận rằng AEHF là hình vuông với các cạnh bằng nhau và các góc trong bằng 90 độ.

 

c) Để chứng minh EF vuông góc với AM, ta cần chứng minh rằng góc giữa EF và AM bằng 90 độ.

 

Ta có:

- AE là chân đường vuông góc từ H xuống AB, nên góc AEH = 90 độ.

- AF là chân đường vuông góc từ H xuống AC, nên góc AFH = 90 độ.

 

Vậy ta có góc AEH = góc AFH = 90 độ.

 

Do đó, EF song song với AB (do AE và AF là các đường vuông góc với AB và AC), và vì AM là trung tuyến của tam giác ABC, nên EF vuông góc với AM.

 

Từ đó, ta có thể kết luận rằng EF vuông góc với AM.

a: Xét tứ giác ADME có 

\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)

Do đó: ADME là hình chữ nhật

30 tháng 4

☯có cái con cc