\(A B C\) vuông tại \(A\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\hat{CAI}+\hat{BAI}=\hat{BAC}=90^0\)

\(\hat{CIA}+\hat{HAI}=90^0\) (ΔHAI vuông tại H)

\(\hat{BAI}=\hat{HAI}\) (AI là phân giác của góc HAB)

nên \(\hat{CAI}=\hat{CIA}\)

S
16 tháng 8

3 tháng 12 2016

Câu 1:

Giải:

Ta có: \(15x=\left(-10\right)y=6z\Rightarrow\frac{15x}{30}=\frac{\left(-10\right)y}{30}=\frac{6z}{30}\Rightarrow\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}\)

Đặt \(\frac{x}{2}=\frac{y}{-3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k,y=-3k,z=5k\)

\(xyz=-30000\)

\(\Rightarrow2k\left(-3\right)k5k=-30000\)

\(\Rightarrow\left(-30\right).k^3=-30000\)

\(\Rightarrow k^3=1000\)

\(\Rightarrow k=10\)

\(\Rightarrow x=20;y=-30;z=50\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(20;-30;50\right)\)

Câu 3:

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{3b}=\frac{b}{3c}=\frac{c}{3d}=\frac{d}{3a}=\frac{a+b+c+d}{3b+3c+3d+3a}=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}\)

\(\frac{a}{3b}=\frac{1}{3}\Rightarrow3a=3b\Rightarrow a=b\)

Tương tự ta có b = c, c = d, d = a

\(\Rightarrow a=b=c=d\)

\(\Rightarrowđpcm\)

3 tháng 12 2016

3, áp dụng tính chất dãy tỉ số bằng nhau:

=>\(\frac{a}{3.b}\)=\(\frac{b}{3.c}\)=\(\frac{c}{3.d}\) =\(\frac{d}{3.a}\) =\(\frac{a+b+c+d}{3\left(b+c+a+d\right)}\) =\(\frac{1}{3}\)

\(\Rightarrow\)\(\frac{a}{3b}\)=\(\frac{1}{3}\) =>\(\frac{1.b}{3.b}\) =\(\frac{b}{3.b}\) =>\(\frac{a}{3b}\) =\(\frac{b}{3b}\) =>...a=b (1)

\(\frac{c}{3d}\)=\(\frac{1}{3}\) =>\(\frac{1.d}{3.d}\) =\(\frac{d}{3d}\) =>\(\frac{c}{3d}\) =\(\frac{d}{3d}\) =>...c=d (2)

\(\frac{b}{3c}\) =\(\frac{1}{3}\) =>\(\frac{1.c}{3.c}\) =\(\frac{c}{3c}\)=>\(\frac{b}{3c}\) =\(\frac{c}{3c}\)=>..b=c (3)

\(\frac{d}{3a}\)=\(\frac{1}{3}\) =>\(\frac{1.a}{3.a}\) =\(\frac{a}{3a}\)=>\(\frac{d}{3a}\) =\(\frac{a}{3a}\)...=>d=a (4)

từ (1).(2).(3)(4)=>a=b=c=d(dpcm)

 
5 tháng 3 2018

a) Xét tam giác vuông ABI và DBI có:

Cạnh BI chung

\(\widehat{ABI}=\widehat{DBI}\left(gt\right)\) 

\(\Rightarrow\Delta ABI=\Delta DBI\)  (Cạnh huyền  - góc nhọn)

b) Do \(\Delta ABI=\Delta DBI\Rightarrow AI=DI\)

Xét tam giác vuông AIE và DIC có:

AI = DI

\(\widehat{AIE}=\widehat{DIC}\) (Hai góc đối đỉnh)

\(\Rightarrow\Delta AIE=\Delta DIC\) (Cạnh góc vuông - góc nhọn kề)

\(\Rightarrow IE=IC\) hay tam giác IEC cân tại I.

c) Xét tam giác EBC có ED và CA là các đường cao nên I là trực tâm.

Vậy thì \(BI\perp EC\)

Do \(\Delta ABI=\Delta DBI\Rightarrow AB=DB\)

Xét tam giác ABD có BA = BD nên nó là tam giác cân. Lại có BI là phân giác nên nó đồng thời là đường cao. Vậy \(BI\perp AD\)

Từ đó suy ra AD // EC

5 tháng 3 2018

Nhớ vẽ hình nhé mấy chế!

Giúp với, mau lên nhé, gần đi học rồi

14 tháng 1 2018

Bạn tự vẽ hình nha 

a) CM: tam giác ABE = tam giác HBE

Xét tam giác ABE (Â=90o) và tam giác HBE (góc H= 90o), ta có:

  Góc ABE = Góc HBE ( BE là p/g góc B)

     BE là cạnh chung

Vậy: tam giác ABE = tam giác HBE ( cạnh huyền-góc nhọn)

c) CM: NM=NC

Xét tam giác AEM và tam giác HEC, ta có:

  góc AEM = góc HEC ( đối đỉnh)

     AE = HE (tam giác ABE = tam gác HBE)

   góc EAM = góc EHC = 90o

Vậy: tam giác AEM = tam giác HEC (g-c-g)

Ta có: AB+AM=BM

          BH+HC=BC

mà BA=BH(tam giác BAE= tam giác BEH)

      AM=HC(tam giác AEM= tam giác HEC)

nên BM=BC

Xét tam giác NBM và tam giác NBC, ta có:

NB là cạnh chung

góc NBM= góc NBC ( BE là p/g góc B)

BM=BC (cmt)

Vậy tam giác NBM= tam giác NBC ( c-g-c)

=> NM=NC ( 2 cạnh tương ứng)

Sorry vì mình khong làm được bài b