K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 12 2016

toán lớp 9 mà dễ thế

2 tháng 12 2016

sao de the

Giả sử 4n3-5n-1 là SCP

Có 4n3-5n-1=(n+1)(4n2-4n-1)

Gọi (n+1; 4n2-4n-1)=d   ( d thuộc N)

=> n+1 chia hết cho d và 4n2-4n-1 chia hết cho d

 Mà 4n2-4n-1 =(n+1)(4n-8) + 7 

=> 7 chia hết cho d

=> d = 7 hoặc 1

Có n(n+1) +7 không chia hết cho 7 => n(n+1) không chia hết cho 7 => n+1 không chia hết cho 7 => d khác 7

=> d=1

=> (n+1; 4n2-4n-1) =1

mả 4n3-5n-1=(n+1)(4n2-4n-1) là SCP

=> n+1 và 4n2-4n-1 đồng thời là SCP

=> 4n+4 và 4n2-4n-1 là SCP

=> 4n +4 + 4n2-4n-1 = 4n^2 +3 là SCP

mà 4n2+3 chia 4 dư 3 

=> Vô lý

=> Giả sử sai

=> đccm

26 tháng 7

sai r bạn ơi

 

 

 

23 tháng 7 2021

ĐK: `-x^4-2 >=0 <=>-(x^4+2) >=0 <=> x^4+2 <=0`

`x^4 >=0 <=>x^4+2>=2 >0 forallx`

Là "`-x^4`" chứ không phải "`(-x)^4`" ạ.

23 tháng 7 2021

Thế điều kiện để nó có nghĩa là gì bạn 

5 tháng 12 2016

\(\frac{ke^2}{huyen^2}cua\alpha\)

26 tháng 5 2021

Ta có

 \(a^2+1=a^2+ab+bc+ca=a\left(a+b\right)+c\left(a+b\right)=\left(a+b\right).\left(a+c\right)\\ Cmtt:b^2+1=\left(b+a\right).\left(b+c\right)\\ c^2+1=\left(c+a\right).\left(c+b\right)\)

Nên

 \(\dfrac{b-c}{a^2+1}+\dfrac{c-a}{b^2+1}+\dfrac{a-b}{c^2+1}\\ =\dfrac{\left(b-c\right)}{\left(a+b\right)\left(a+c\right)}+\dfrac{\left(c-a\right)}{\left(b+c\right)\left(b+a\right)}+\dfrac{\left(a-b\right)}{\left(c+a\right)\left(c+b\right)}\\ =\dfrac{\left(b-c\right)\left(b+c\right)+\left(c-a\right)\left(c+a\right)+\left(a-b\right)\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\\ =\dfrac{b^2-c^2+c^2-a^2+a^2-b^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\\ =0\)

 

26 tháng 5 2021

\(\dfrac{b-c}{a^2+1}+\dfrac{c-a}{b^2+1}+\dfrac{a-b}{c^2+1}\)

\(=\dfrac{b-c}{a^2+ab+bc+ac}+\dfrac{c-a}{b^2+ab+bc+ca}+\dfrac{a-b}{c^2+ab+bc+ca}\)

\(=\dfrac{b-c}{a\left(a+b\right)+c\left(a+b\right)}+\dfrac{c-a}{b\left(a+b\right)+c\left(a+b\right)}+\dfrac{a-b}{c\left(c+a\right)+b\left(a+c\right)}\)

\(=\dfrac{b-c}{\left(a+c\right)\left(a+b\right)}+\dfrac{c-a}{\left(b+c\right)\left(a+b\right)}+\dfrac{a-b}{\left(b+c\right)\left(a+c\right)}\)

\(=\dfrac{\left(b-c\right)\left(b+c\right)+\left(c-a\right)\left(a+c\right)+\left(a-b\right)\left(a+b\right)}{\left(a+c\right)\left(a+b\right)\left(b+c\right)}\)

\(=\dfrac{b^2-c^2+c^2-a^2+a^2-b^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=0\) 

Không thấy ai giải, mình giúp bạn vậy :P  

Vào thống kê hỏi đáp là thấy ha :)

17 tháng 2 2020

Tks nhé :>

28 tháng 9 2017

chả bạn nào kả mới kiểm tra 15 phút xong ko ak

28 tháng 9 2017

v~ mai tui KT 1 tiết rồi