Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(A=3\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)=\)
\(=13\left(3+3^4+3^7+...+3^{118}\right)⋮13\)
\(A=3\left(1+3+3^2+3^3\right)+...+3^{117}\left(1+3+3^2+3^3\right)=\)
\(A=40\left(3+3^5+3^9+...+3^{117}\right)⋮40\)
b/
\(A=3+3^2\left(1+3+3^2+...+3^{118}\right)=\)
\(=3+9\left(1+3+3^2+...+3^{118}\right)\) chia 9 dư 3 nên A không chia hết cho 9
c/
\(3A=3^2+3^3+3^4+...+3^{121}\)
\(\Rightarrow2A=3A-A=3^{121}-3\Rightarrow2A+3=3^{121}\)
\(2A+3=3^{121}=3.3^{120}=3.\left(3^4\right)^{30}=3.81^{30}\) có tận cùng là 3 nên 2A+3 không phải là số chính phương
1)
a)
b)
2)
Vậy A không phải là số chính phương
Học tốt nha
Gọi số cần tìm X => 1000<X<9999, đặt X= 147*A =>A không nhỏ hơn 8 và bé hơn hoặc bằng 67, tận cùng của X là 9 nên tận cùng của A phải là 7 như vậy A chỉ có thể 17,27,37,47,57,67 , mặt khác 147=3*7*7 suy ra A=3*k^2 ( k số twj nhiên), theo trên chỉ có hai số 27 và 57 chia hết 3 nên A chỉ có thể là 27, hoặc 57, thấy rằng chỉ có A= 27 thỏa màn, vậy X= 147*24 = 3969 = 63^2.
Với 1 số tự nhiên a bất kì \(\Rightarrow\left[{}\begin{matrix}a=3x\\a=3x+1\\a=3x+2\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}a^2=9x^2\\a^2=9x^2+6x+1\\a^2=9x^2+12x+4\end{matrix}\right.\)
Tổng 2 số chính phương \(p=a^2,q=b^2\) chia hết cho 3 => \(p=9x^2,q=9y^2\Rightarrow p,q⋮9\)
Vì số chính phương khi chia hết cho 1 số nguyên tố thì phải chia hết cho bình phương của số đó.
Trường hợp cuối chưa hắc phải chia hết cho 16 mới là số chính phương vì :
Chia hết cho 8 -> Chia hết cho 2 và 4 ( TH đầu tiên )
vì 4 chia hết cho 2
vì 9 chia hết cho 3
vì 25 chia hết cho 5
vì 16 chia hết cho 8