Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1+1=2 cũng có thể bằng 3
nhưng tôi nghĩ bằng 2
nếu như bạn nghĩ 3 thì bạn đi hỏi cô giáo đi
Câu hỏi này có một thời gian tôi cũng cố gắng đi tìm câu trả lời ! Rất hấp dẫn.
Để hiểu về vấn đề này, ta phải đi về tận cội nguồn sâu xa của toán học. Có lẽ tôi chỉ nói vắn tắt.
1+1=2. Đó chẳng qua là do sự hiểu biết của con người.
Nếu chúng ta nhìn bình thường thì chỉ thấy, oh, đơn giản 1+1=2, nhưng chúng ta nhìn theo kiểu này, +1 chính là phép biểu hiện số liền sau. Như vậy, 1+1 nghĩa là số liền sau số 1, n+1 nghĩa là số liền sau số n. Một cách nhìn vấn đề rất trực quan.
Nhà toán học đã đưa ra hệ tiên đề Peano gồm 4 tiên đề như sau:
Có một tập hợp N gồm các tính chất sau:
1/ Với mỗi phần tử x trong N có một phần tử, ký hiệu là S(x), trong N được gọi là phần tử kế tiếp của x
2/ Cho x và y trong N sao cho, nếu S(x)=S(y) thì x = y
3/ Có một phần tử trong N ký hiệu là 1 sao cho 1 không là phần tử kế tiếp của một tử nào trong N (nghĩa là không tồn tại x sao cho S(x)=1 )
4/ Cho U là tập con của N sao cho 1 thuộc U và S(x) thuộc U x thuộc U. Lúc đó U = N
Ta lưu ý rằng, các phép cộng, phép nhân trên N cũng chỉ là một ánh xạ từ NxN -> N
Với các định nghĩa trên, ta có thể xác định 2 là S(1), 3 là S(2), 4 là S(3) .........
Ta cũng có thể xác định phép cộng trên N như sau: n+1 = S(n), n+2=S(n+1)
Ta cũng có thể xác định phép nhân trên N như sau: 1.n = n, 2.n = n+n, ....
Và do đó việc 1+1=2 là do từ các tiên đề Peano mà có.
Lưu ý: Từ các tiên đề Peano, định nghĩa phép công, phép nhân, ta có thể CM các tính chất giao hoán, phân phối. Và đặc biệt, quan trọng nhất là: Tập N được định nghĩa như trên là duy nhất theo nghĩa song ánh (Nếp tồn tại tập M thỏa các tiên đề Peano, thì tồn tại song ánh từ N vào M)
Với lại câu hỏi bạn hỏi quá dễ lấy 1◄+1◄=2◄
ko thì ◄+◄=◄◄
ko thì thử lấy 1 ngón tay + 1 ngón tay xem có phải dc ngón tay ko ?
Vì mọi phân số có mẫu =0 ko tồn tại <-- định lý này chắc hơn dãy tỉ số = nhau nhiều @@
Theo mình nghĩ là do các phân sô như đã nêu không có tỉ lệ thuận với nhau (không có đại lượng rõ ràng)
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)(ĐK b khác d;b khác -d)
Nói như bạn thì:
\(\frac{1}{1}=\frac{2}{2}=\frac{3}{3}=\frac{1+2}{1+2}\)
3 =1+2 => ko có bạn quên điều kiện r :D
Mình có nghe nói là 2 nhà toán học Alfred North Whitehead và Bertrand Russell đã chứng minh 1+1=2 trong quyển Principa Mathemaa (tạm dịch: nền tảng của toán học). Họ đã mất hơn 360 trang để chứng minh điều này. Thầy giáo bạn gãi đầu là phải.
Phép chứng minh này dựa trên một bộ 9 tiên đề về tập hợp gọi tắt là ZFC (Zermelo–Fraenkel). Rất nhiều lý thuyết số học hiện đại dựa trên những tiên đề này. Nếu có người chứng minh được một trong những tiên đề đó là sai (VD: 2 tập hợp có cùng các phần tử mà vẫn không bằng nhau) thì rất có thể dẫn đến 1+1 != 2.
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Bài làm
1+1=2
Là theo khoa học đã chứng minh.
Thế bạn đã thấy, bạn giơ 1 ngón tay, bạn thêm một ngón tay nữa, bạn đếm xem nó có bằng ba không mà hỏi
# Chúc bạn học tốt #
vì nó là phép trừ chứ không phải phép cộng