K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2017

Giải bài 2 trang 62 sgk Hình học 10 | Để học tốt Toán 10

Gọi M(xo; yo) nằm trên nửa đường tròn đơn vị sao cho ∠xOM = α

Khi đó điểm M'(-xo; yo) trên nửa đường tròn đơn vị sao cho ∠xOM' = 180o - α (tức là ∠xOM' là bù với ∠xOM = α)

Do đó: sinα = yo = sin(180o - α)

        cosα = xo = -(-xo) = -cos(180o - α)

30 tháng 3 2017

Gọi M(x0;y0) là điểm M trên nửa đường tròn đơn vị sao cho góc xOM = α. Khi đó M’ trên nửa đường tròn đơn vị sao cho ∠xOM’ = 180° – a (tức là góc xOM’ là bù với góc xOM = a) có toạ độ M’ (-x0;y0)

Do đó: sina = y0 = sin(180° – a) cosa = x0 = -(-x0) = -sin(180° – a)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Ta có:

\(\begin{array}{l}\cos {30^o} = \sin \left( {{{90}^o} - {{30}^o}} \right) = \sin {60^o} = \frac{{\sqrt 3 }}{2};\\\sin {150^o} = \sin \left( {{{180}^o} - {{150}^o}} \right) = \sin {30^o} = \frac{1}{2};\\\tan {135^o} =  - \tan \left( {{{180}^o} - {{135}^o}} \right) =  - \tan {45^o} =  - 1\end{array}\)

\( \Rightarrow E = 2.\frac{{\sqrt 3 }}{2} + \frac{1}{2} - 1 = \sqrt 3  - \frac{1}{2}.\)

10 tháng 11 2016

1/ Tinh ∆. Pt co 2 nghiem x1,x2 <=> ∆>=0.
Theo dinh ly Viet: S=x1+x2=-b/a=m+3.
Theo gt: |x1|=|x2| <=> ...

2/ \(\frac{\sin^2x-\cos^2x}{1+2\sin x.\cos x}\)

\(=\frac{\cos^2x\left(\frac{\sin^2x}{\cos^2x}-\frac{\cos^2x}{\cos^2x}\right)}{\cos^2x\left(\frac{1}{\cos^2x}+\frac{2\sin x.\cos x}{\cos^2x}\right)}\)

\(=\frac{\tan^2x-1}{\tan^2x+1+2\tan x}\)

\(=\frac{\left(\tan x-1\right)\left(\tan x+1\right)}{\left(\tan x+1\right)^2}\)

\(=\frac{\tan x-1}{\tan x+1}\left(dpcm\right)\)

c/ A M C B N BC=8 AC=7 AB=6

  • Ta có: \(\overrightarrow{BA}^2=\left(\overrightarrow{CA}-\overrightarrow{CB}\right)^2\)

\(\Leftrightarrow BA^2=CA^2-2\overrightarrow{CA}.\overrightarrow{CB}+CB^2\)

\(\Leftrightarrow\overrightarrow{CA}.\overrightarrow{CB}=\frac{CA^2+CB^2-BA^2}{2}=\frac{77}{2}\)

  • \(\overrightarrow{MN}^2=\left(\overrightarrow{CN}-\overrightarrow{CM}\right)^2=\left(\frac{3}{2}\overrightarrow{CB}-\frac{5}{7}\overrightarrow{CA}\right)^2\)

\(\Leftrightarrow MN^2=\frac{9}{4}CB^2-\frac{15}{7}\overrightarrow{CA}.\overrightarrow{CB}+\frac{25}{49}CA^2\)

\(=\frac{9}{4}.64-\frac{15}{7}.\frac{77}{2}+\frac{25}{49}.49\)

\(=\frac{173}{2}\)

\(\Rightarrow MN=\sqrt{\frac{173}{2}}=\frac{\sqrt{346}}{2}\)

1 tháng 4 2017

a) Đúng b) Đúng

c) Hai vectơ = ( 5; 3) và = (3; 5) không cùng phương nên không thể đối nhau, do vậy câu c) sai

d) Đúng

11 tháng 5 2017

a) Tồn tại do \(\left|sin\alpha\right|\le1\).
​b) Tồn tại do \(\left|cos\alpha\right|\le1\).
c) Tồn tại do\(\left|sin\alpha\right|\le1\).
​d) Không tồn tại do \(\left|cos\alpha\right|\ge1\).
​e) Không tồn tại do \(\left|sin\alpha\right|\ge1\).
​g) Không tồn tại do \(\left|cos\alpha\right|\ge1\).

12 tháng 5 2017

A B C M E F N
Kẻ đoạn thẳng MF.
Do AE = EF nên E là trung điểm AF.
Trong tam giác ABC có AM là đường trung tuyến nên M là trung điểm của BC.
Vì vậy: MF là đường trung bình của tam giác BEC.
Suy ra: MF//BE.
Trong tam giác AMF có E là trung điểm của AF, BE//MF nên BE đi qua trung điểm của AM hay N là trung điểm của AM.
Vì vậy \(\overrightarrow{NA}\)\(\overrightarrow{NM}\) là hai véc tơ đối nhau.

19 tháng 5 2017

A B C D P M
a) \(\overrightarrow{MP}.\overrightarrow{BC}=\dfrac{1}{2}\left(\overrightarrow{MA}+\overrightarrow{MD}\right).\left(\overrightarrow{BM}+\overrightarrow{MC}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{MA}.\overrightarrow{BM}+\overrightarrow{MA}.\overrightarrow{MC}+\overrightarrow{MD}.\overrightarrow{BM}+\overrightarrow{MD}.\overrightarrow{MC}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{MA}.\overrightarrow{BM}+\overrightarrow{MA}.\overrightarrow{MC}-\overrightarrow{MB}.\overrightarrow{MD}+\overrightarrow{MD}.\overrightarrow{MC}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{MA}.\overrightarrow{BM}+\overrightarrow{MD}.\overrightarrow{MC}\right)\)
\(=\dfrac{1}{2}\left(0+0\right)=0\) (vì \(AC\perp BD\) nên \(\overrightarrow{MA}.\overrightarrow{BM}=0;\overrightarrow{MD}.\overrightarrow{MC}=0\)).
Vậy \(\overrightarrow{MP}.\overrightarrow{BC}=0\) nên \(MP\perp BC\).

4 tháng 6 2016

* Gọi M, N lần lượt là trung điểm của AB và CD

Khi đó, MN vuông AB,CD; IM=MA=MB, IN=ND=NC

IN=d(I, CD)= => IC=ID=

Đường tròn (C) tâm I, bán kính R=IC có phương trình: 

* Tọa độ C,D là nghiệm của hệ 2 phương trình:  và x-3y-3=0

=> y=1 or y=-1  Vì C có hoành độ dương nên C(6,1) và D(0,-1)

* S=45/2 <=> 1/2. MN.(AB+CD)=45/2

<=> MN(2IM+2IN)=45

<=> MN^2=45/2 => MN=

=> IM=MN-IN=

Mà AB//CD =>   => 

vói   => B(3,5) và C(6,1)

Vậy BC: 4x+3y-27=0

31 tháng 8 2016

Tại sao AB // CD thì lại suy ra đc tỉ lện kia hả bạn?