Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+199\right)=19900\)
\(\left(x+x+x+...+x\right)+\left(1+2+3+...+199\right)=19900\)
\(199x=19900-19900\)
\(199x=0\)
\(x=0:199\)
\(x=0\)
\(B=\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+....+\frac{198}{2}+\frac{199}{1}\)
\(=\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+\left(\frac{3}{197}+1\right)+.....+\left(\frac{198}{2}+1\right)+\frac{200}{200}\)
\(=200\left(\frac{1}{100}+\frac{1}{199}+\frac{1}{198}+....+\frac{1}{2}\right)\)
= 200.A
=> A:B=\(\frac{1}{200}\)
\(A=\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{189}{2}+\frac{199}{1}\)
\(A=\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+199\)
\(A=\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+\left(\frac{3}{197}+1\right)+...+\left(\frac{198}{2}+1\right)+1\)
\(A=\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}+1\)
\(A=\frac{200}{200}+\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}\)
\(A=200\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)\)
Vậy \(A=200\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)\)
B=(1/199+1)+(2/198+1)+...+(198/2+1)+1
B=200/199+200/198+...+200/2+200/200
B=200*A
Suy ra A/B=1/200
Tách 199/1 ở B thành 1*199
Sau đó ghép 1 vs từng số còn lại của B còn 1 số 1 giữ nguyên
Tính A/B dc 1/200
tử số của E=1 +(1+2)+(1+2+3)+.....+(1+2+3+..+98)
=1.2/2 +2.3/2 +3.4/2 +.....+98.99/2
=1.2+2.3+3.4+...+98.99/2
=>E=1/2 (đpcmtử số của E=1 +(1+2)+(1+2+3)+.....+(1+2+3+..+98)
=1.2/2 +2.3/2 +3.4/2 +.....+98.99/2
=1.2+2.3+3.4+...+98.99/2
=>E=1/2 (đpcmtử số của E=1 +(1+2)+(1+2+3)+.....+(1+2+3+..+98)
=1.2/2 +2.3/2 +3.4/2 +.....+98.99/2
=1.2+2.3+3.4+...+98.99/2
=>E=1/2 (đpcmtử số của E=1 +(1+2)+(1+2+3)+.....+(1+2+3+..+98)
=1.2/2 +2.3/2 +3.4/2 +.....+98.99/2
=1.2+2.3+3.4+...+98.99/2
=>E=1/2 (đpcmtử số của E=1 +(1+2)+(1+2+3)+.....+(1+2+3+..+98)
=1.2/2 +2.3/2 +3.4/2 +.....+98.99/2
=1.2+2.3+3.4+...+98.99/2
=>E=1/2 (đpcmtử số của E=1 +(1+2)+(1+2+3)+.....+(1+2+3+..+98)
=1.2/2 +2.3/2 +3.4/2 +.....+98.99/2
=1.2+2.3+3.4+...+98.99/2
=>E=1/2 (đpcmtử số của E=1 +(1+2)+(1+2+3)+.....+(1+2+3+..+98)
=1.2/2 +2.3/2 +3.4/2 +.....+98.99/2
=1.2+2.3+3.4+...+98.99/2
=>E=1/2 (đpcmtử số của E=1 +(1+2)+(1+2+3)+.....+(1+2+3+..+98)
=1.2/2 +2.3/2 +3.4/2 +.....+98.99/2
=1.2+2.3+3.4+...+98.99/2
=>E=1/2 (đpcmtử số của E=1 +(1+2)+(1+2+3)+.....+(1+2+3+..+98)
=1.2/2 +2.3/2 +3.4/2 +.....+98.99/2
=1.2+2.3+3.4+...+98.99/2
=>E=1/2 (đpcmAlio nhà mình có ai biết chỗ nào bán quàn áo, bộ đồ cho bảo vệ gác cổng ko, nhắn mình xin địa chỉ vớiTa có: B = (1 + 100) + (2 + 99) + ...+ (50 + 51) = 101. 50
Để chứng minh A chia hết cho B ta chứng minh A chia hết cho 50 và 101
Ta có: A = (13 + 1003) + (23 + 993) + ... +(503 + 513)
= (1 + 100)(12 + 100 + 1002) + (2 + 99)(22 + 2. 99 + 992) + ... + (50 + 51)(502 + 50. 51 + 512) =
101(12 + 100 + 1002 + 22 + 2. 99 + 992 + ... + 502 + 50. 51 + 512) chia hết cho 101 (1)
Lại có: A = (13 + 993) + (23 + 983) + ... + (503 + 1003)
Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2)
Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chi hết cho B
Số các số hạng trong dãy số trên là:
$(199-1):1+1=199$ (số)
Tổng dãy số đó bằng:
$(199+1)\cdot199:2=19900$
Số số hạng trong dãy số trên là (199-1):1+1=199(số hạng)
Tổng dãy số trên là : (199+1).199:2=19900
Vậy dãy số trên bằng 19900