K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2023

Số các số hạng trong dãy số trên là:

$(199-1):1+1=199$ (số)

Tổng dãy số đó bằng:

$(199+1)\cdot199:2=19900$

28 tháng 11 2023

Số số hạng trong dãy số trên là (199-1):1+1=199(số hạng)

Tổng dãy số trên là : (199+1).199:2=19900

Vậy dãy số trên bằng 19900

\(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+199\right)=19900\)

\(\left(x+x+x+...+x\right)+\left(1+2+3+...+199\right)=19900\)

\(199x=19900-19900\)

\(199x=0\)

\(x=0:199\)

\(x=0\)

15 tháng 4 2020

\(B=\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+....+\frac{198}{2}+\frac{199}{1}\)

\(=\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+\left(\frac{3}{197}+1\right)+.....+\left(\frac{198}{2}+1\right)+\frac{200}{200}\)

\(=200\left(\frac{1}{100}+\frac{1}{199}+\frac{1}{198}+....+\frac{1}{2}\right)\)

= 200.A

=> A:B=\(\frac{1}{200}\)

23 tháng 4 2015

\(A=\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{189}{2}+\frac{199}{1}\)

\(A=\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+199\)

\(A=\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+\left(\frac{3}{197}+1\right)+...+\left(\frac{198}{2}+1\right)+1\)

\(A=\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}+1\)

\(A=\frac{200}{200}+\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}\)

\(A=200\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)\)

Vậy    \(A=200\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)\)

17 tháng 4 2016

B=(1/199+1)+(2/198+1)+...+(198/2+1)+1

B=200/199+200/198+...+200/2+200/200

B=200*A

Suy ra A/B=1/200

17 tháng 4 2016

Tách 199/1 ở B thành 1*199

Sau đó ghép 1 vs từng số còn lại của B còn 1 số 1 giữ nguyên

Tính A/B dc 1/200

14 tháng 10 2023

tử số của E=1 +(1+2)+(1+2+3)+.....+(1+2+3+..+98)

=1.2/2  +2.3/2 +3.4/2 +.....+98.99/2

=1.2+2.3+3.4+...+98.99/2

=>E=1/2 (đpcmtử số của E=1 +(1+2)+(1+2+3)+.....+(1+2+3+..+98)

=1.2/2  +2.3/2 +3.4/2 +.....+98.99/2

=1.2+2.3+3.4+...+98.99/2

=>E=1/2 (đpcmtử số của E=1 +(1+2)+(1+2+3)+.....+(1+2+3+..+98)

=1.2/2  +2.3/2 +3.4/2 +.....+98.99/2

=1.2+2.3+3.4+...+98.99/2

=>E=1/2 (đpcmtử số của E=1 +(1+2)+(1+2+3)+.....+(1+2+3+..+98)

=1.2/2  +2.3/2 +3.4/2 +.....+98.99/2

=1.2+2.3+3.4+...+98.99/2

=>E=1/2 (đpcmtử số của E=1 +(1+2)+(1+2+3)+.....+(1+2+3+..+98)

=1.2/2  +2.3/2 +3.4/2 +.....+98.99/2

=1.2+2.3+3.4+...+98.99/2

=>E=1/2 (đpcmtử số của E=1 +(1+2)+(1+2+3)+.....+(1+2+3+..+98)

=1.2/2  +2.3/2 +3.4/2 +.....+98.99/2

=1.2+2.3+3.4+...+98.99/2

=>E=1/2 (đpcmtử số của E=1 +(1+2)+(1+2+3)+.....+(1+2+3+..+98)

=1.2/2  +2.3/2 +3.4/2 +.....+98.99/2

=1.2+2.3+3.4+...+98.99/2

=>E=1/2 (đpcmtử số của E=1 +(1+2)+(1+2+3)+.....+(1+2+3+..+98)

=1.2/2  +2.3/2 +3.4/2 +.....+98.99/2

=1.2+2.3+3.4+...+98.99/2

=>E=1/2 (đpcmtử số của E=1 +(1+2)+(1+2+3)+.....+(1+2+3+..+98)

=1.2/2  +2.3/2 +3.4/2 +.....+98.99/2

=1.2+2.3+3.4+...+98.99/2

=>E=1/2 (đpcmAlio nhà mình có ai biết chỗ nào bán quàn áo, bộ đồ cho bảo vệ gác cổng ko, nhắn mình xin địa chỉ vớiTa có: B = (1 + 100) + (2 + 99) + ...+ (50 + 51) = 101. 50

Để chứng minh A chia hết cho B ta chứng minh A chia hết cho 50 và 101

Ta có: A = (13 + 1003) + (23 + 993) + ... +(503 + 513) 

= (1 + 100)(12 + 100 + 1002) + (2 + 99)(22 + 2. 99 + 992) + ... + (50 + 51)(502 + 50. 51 + 512) =

101(12 + 100 + 1002 + 22 + 2. 99 + 992 + ... + 502 + 50. 51 + 512) chia hết cho 101 (1)

Lại có: A = (13 + 993) + (23 + 983) + ... + (503 + 1003)

Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2) 

Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chi hết cho B