Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mk nghĩ làm bài này như sau:
Ta có:\(\begin{cases}T1=2\pi\sqrt{\frac{l1}{g}}\\T2=2\pi\sqrt{\frac{l2}{g}}\end{cases}\)\(\Rightarrow\sqrt{\frac{l1.l2}{g^2}}=\frac{T1.T2}{\left(2\pi\right)^2}\)\(\Rightarrow\frac{1}{\sqrt{g}}.\sqrt{\frac{l1.l2}{g}}=\frac{T1.T2}{\left(2\pi\right)^2}\)
\(\Rightarrow\) \(T3=2\pi\sqrt{\frac{l1.l2}{g}}=\frac{\sqrt{g}}{2\pi}T1.T2\)
Chọn C
Đáp án D
Phương pháp: Sử dụng công thức tính chu kì của con lắc đơn T = 2 π l g
Cách giải:
Công thức tính chu kì dao động của con lắc đơn T = 2 π l g => Chu kì sóng tỉ lệ thuận với l
=> Khi chiều dài dây giảm 2 lần thì chu kì giảm 2 lần
=> T ' = T 2 => Chọn D
Chọn đáp án D
+ Công thức tính chu kỳ con lắc đơn: T = 2 π l g
+ Khi chiều dài tăng 4 lần thì chu kỳ sẽ tăng lên 2 lần
Theo công thức tính chu kì của con lắc đơn, ta thấy
T tỉ lệ thuận với \(\sqrt{l}\)
=> chiều dài tăng 2 thì T tăng \(\sqrt{2}\) lần
=> T'=\(2\sqrt{2}s\)
\(T=2\pi\sqrt{\frac{l}{g}}\\ \frac{T'}{T}=\sqrt{\frac{2l}{l}}=\sqrt{2}\)
\(\Rightarrow T'-2\sqrt{2}s\)
Áp dụng công thức sau: \(T=2\pi\sqrt{\frac{1}{g}}=...\) bạn tự giải nốt
Đáp án D
+ Ta có T = 2 π l g → l = g T 2 π 2 → l 1 = g T 1 2 π 2 l 2 = g T 2 2 π 2
Tương tự như vậy ta cũng có l = l 1 + l 2 = g T 2 π 2
→ T 2 = T 1 2 + T 2 2
+ Nhận thấy rằng T = 2 π l g = 2 π g ⏟ a l hệ số tỉ lệ a trong mối quan hệ tỉ lệ giữ T và l không ảnh hưởng đến kết quả bài toán → Ta có thể giải bài toán này theo một quy trình nhanh hơn. Với T 2 ~ l l = l 1 + l 2
→ T 2 = T 1 2 + T 2 2