a) Chứng minh rằng AC là đường trung t...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2017

a) Ta có: AB = AD (gt) => A thuộc đường trung trực của BD

CB = CD (gt) => C thuộc đường trung trực của BD.

Vậy AC là đường trung trực của BD.

b) Xét ∆ ABC và ∆ADC có AB = AD (gt)

BC = DC (gt)

AC cạnh chung

nên ∆ ABC = ∆ADC (c.c.c)

Suy ra: \(\widehat{B}=\widehat{D}\)

Ta có \(\widehat{B}+\widehat{D}=360^o-\left(100^o+60^o\right)=200^o\)

Do đó \(\widehat{B}=\widehat{D}=100^o\)

21 tháng 4 2017

Bài giải:

a) Ta có: AB = AD (gt) => A thuộc đường trung trực của BD

CB = CD (gt) => C thuộc đường trung trực của BD.

Vậy AC là đường trung trực của BD.

b) Xét ∆ ABC và ∆ADC có AB = AD (gt)

BC = DC (gt)

AC cạnh chung

nên ∆ ABC = ∆ADC (c.c.c)

Suy ra: ˆB=ˆD⇒B^=D^

Ta có ˆB+ˆD=3600(100+60)=200B^+D^=3600−(100+60)=200

Do đó ˆB=ˆD=1000B^=D^=1000

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Ta có:

\(AB = AD\) (gt) nên \(A\) thuộc đường trung trực của \(BD\)

\(CB = CD\) (gt) nên \(C\) thuộc đường trung trực của \(BD\)

Vậy \(AC\) là đường trung trực của \(BD\)

b) Xét \(\Delta ABC\) và \(\Delta ADC\) ta có:

\(AB = AD\) (gt)

\(BC = CD\) (gt)

\(AC\) chung

Suy ra: \(\Delta ABC = \Delta ADC\) (c-g-c)

Suy ra: \(\widehat {ABC} = \widehat {ADC} = 95^\circ \) (hai góc tương ứng)

Trong tứ giác \(ABCD\), tổng các góc bằng \(360^\circ \) nên:

\(\widehat A = 360^\circ  - \left( {95^\circ  + 35^\circ  + 95^\circ } \right) = 135^\circ \)

22 tháng 4 2017
Xét \(\Delta\)ABD và \(\Delta\)BDC có:
\(\widehat{DBC}=\widehat{DBC}\left(gt\right)\)
\(\Rightarrow\Delta\)ABD ∽ \(\Delta\)BDC(trường hợp 3)
\(\Rightarrow\dfrac{AB}{BD}=\dfrac{DB}{DC}\Rightarrow BD^2=AB.BC\)
=> BD = \(\sqrt{ }\)(AB.DC) = \(\sqrt{ }\)(12,5.8,5) = \(\sqrt{ }\)356,25 => BD = 18,9 cm
22 tháng 4 2017

Xét ∆ABD và ∆BDC có:

2016-01-16_190637

=> ∆ABD ∽ ∆BDC(trường hợp 3)

2016-01-16_190746

=> BD = √(AB.DC) = √(12,5.8,5) = √356,25 => BD = 18,9 cm

12 tháng 5 2017

xét tam giác AHB và tam giác CHA có

góc H = 90 độ

AH là cạnh chung

góc B = góc C (kề bù)

suy ra tam giác AHB đồng dạng tam giác CHA( G.C.G)

\(\dfrac{AH}{CH}=\dfrac{HB}{AH}\Rightarrow AH\cdot AH=HB\cdot HC\)

\(\Rightarrow AH^2=HB\cdot HC\)

21 tháng 4 2017

Bài giải:

a) Góc ngoài còn lại: =3600 – (750 + 900 + 1200) = 750

Ta tính được các góc ngoài tại các đỉnh A, B, C, D lần lượt là:

1050, 900, 600, 1050

b)Hình 7b SGK:

Tổng các góc trong + ++=3600

Nên tổng các góc ngoài

+ ++=(1800 - ) + (1800 - ) + (1800 - ) + (1800 - )

=(1800.4 - ( +++ )

=7200 – 3600 =3600

c) Nhận xét: Tổng các góc ngoài của tứ giác bằng 3600

25 tháng 8 2018

Xét tứ giác ABCD có:

\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

\(\Leftrightarrow\widehat{D}=360^o-\left(\widehat{A}+\widehat{B}+\widehat{C}\right)\)

\(\Leftrightarrow\widehat{D}=360^o-\left(90^o+120^o+75^o\right)\)

\(\Leftrightarrow\widehat{D}=360^o-285^o=75^o\)

Ta có:+)\(\widehat{BAD}+\widehat{A_1}=180^o\) (hai góc kề bù)

\(\Rightarrow\widehat{A_1}=180^o-\widehat{BAD}\)

\(\Rightarrow\widehat{A_1}=180^o-75^o=105^o\)

+)\(\widehat{B}_1+\widehat{CBA}=180^o\) (hai góc kề bù)

\(\Rightarrow\widehat{B_1}=180^o-\widehat{CBA}\)

\(\Rightarrow\widehat{B_1}=180^o-90^0=90^o\)

\(+)\widehat{C_1}+\widehat{BCD}=180^o\) (hai góc kề bù)

\(\Rightarrow\widehat{C_1}=180^o-\widehat{BCD}\)

\(\Rightarrow\widehat{C_1}=180^o-120^o=60^o\)

\(+)\widehat{D_1}+\widehat{ADC}=180^o\) (hai góc kề bù)

\(\Rightarrow\widehat{D}_1=180^o-\widehat{ADC}\)

\(\Rightarrow\widehat{D_1}=180^o-75^o=105^o\)

b,Xét tứ giác ABCD có:

\(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\)

\(\widehat{A_1}+\widehat{B_1}+\widehat{C_1}+\widehat{D_1}\)

\(=\left(180^o-\widehat{A}\right)+\left(180^o-\widehat{B}\right)+\left(180^o-\widehat{C}\right)+\left(180^o-\widehat{D}\right)\)

\(=180^o.4-\left(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}\right)\)

\(=720^o-360^o=360^o\)

c) Nhận xét: Tổng các góc ngoài của tứ giác bằng \(360^o\)

14 tháng 5 2017

ta có : \(\widehat{A}+\widehat{B}=180\)=>  AD // BC ( 2 góc trong cùng phía có tổng 180)  => ABCD là hình thang

mặt khác: CB=CD => ABCD là hình bình hành ( hình thang có 2 cạnh kề bằng nhau là hình bình hành)

Dễ thấy AC là đường chéo của ABCD =>  AC là tia phân giác của \(\widehat{A}\)(đường chéo của hình bình hành là tia pg của 2 đỉnh )

8 tháng 8 2020

hình như sai đề bn ạ

ko ra đủ dữ liệu