Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (x+y)(x+y) = x^2 + xy +xy + y^2 = x^2 + 2xy + y^2
b) (x-y)(x-y)= x^2 - xy - xy +y^2 = x^2 - 2xy + y^2
c) (x+y)(x-y)= x^2 + xy - xy - y^2 = x^2 - y^2
d) (x+5)(x-1)= x^2 + 5x - x -5 = x^2 + 4x -5
a) Áp dụng tc dãy tỉ số = nhau ta có;
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=2\)
Khi đó: \(\hept{\begin{cases}\frac{x}{3}=2\Rightarrow x=6\\\frac{y}{5}=2\Rightarrow y=10\end{cases}}\)
Vậy \(\hept{\begin{cases}x=6\\y=10\end{cases}}\).
b) Áp dụng tc dãy tỉ số = nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x-y+z}{2-3+4}=\frac{3}{3}=1\)
Khi đó: \(\hept{\begin{cases}\frac{x}{2}=1\Rightarrow x=2\\\frac{y}{3}=1\Rightarrow y=3\\\frac{z}{4}=1\Rightarrow z=4\end{cases}}\)
Vậy ....
2. Đặt \(\frac{a}{b}=\frac{c}{d}=k\)
\(\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}\left(1\right)}\)
Thay (1) vào đề: \(VT=\frac{a}{a-b}=\frac{bk}{bk-b}=\frac{bk}{b\left(k-1\right)}=\frac{k}{k-1}\)
\(VP=\frac{c}{c-d}=\frac{dk}{dk-d}=\frac{dk}{d\left(k-1\right)}=\frac{k}{k-1}\)
\(\Rightarrow VT=VP\)
\(\Leftrightarrow\frac{a}{a-b}=\frac{c}{c-d}\rightarrowĐpcm.\)
\(\frac{x}{3}=\frac{y}{5}\)và x + y = 16
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{16}{8}=2\)
\(\frac{x}{3}=2\Rightarrow x=2.3=6\)
\(\frac{y}{5}=2\Rightarrow y=2.5=10\)
Vậy...
a) \(\left(a+1\right).\left(a-1\right)=a^2-a+a-1=a^2-1\)
b)\(\left(x-2\right).\left(x+2\right)=x^2-2x+2x-4=x^2-4\)
c)\(\left(x+y\right).\left(x+y\right)=x^2+xy+xy+y^2=x^2+2xy+y^2\)
d)\(\left(x+y\right).\left(x-y\right)=x^2-xy+xy-y^2=x^2-y^2\)
e) \(\left(x+3\right)\left(x-5\right)=x^2-5x+3x-15=x^2-2x-15\)
f)\(\left(ab-2\right).\left(a^2.b^2+2ab+4\right)=ab.\left(a^2.b^2+2ab+4\right)-2.\left(a^2.b^2+2ab+4\right)\)
\(=a^3.b^3+2a^2b^2+4ab-2.a^2.b^2-4ab-8\)
\(=a^3b^3-8\)
Lớp 8 thì các phương trình này đc khai triển ra bằng hằng đẳng thức
a) Thay x=1 vào hàm số y=2x-1, ta được:
\(y=2\cdot1-1=2-1=2\)
Thay x=-1 vào hàm số y=2x-1, ta được:
\(y=2\cdot\left(-1\right)-1=-2-1=-3\)
Thay x=0 vào hàm số y=2x-1, ta được:
\(y=2\cdot0-1=-1\)
Thay x=2 vào hàm số y=2x-1, ta được:
\(y=2\cdot2-1=4-1=3\)
Vậy: F(1)=2; F(-1)=-3; F(0)=-1; F(2)=3
b)
x 1 -1 0 2 y=2x-1 2 -3 -1 3
a) (x.y)+(x.y)
=> (x.x)+(y.y)
=> x2+y2
b) (x-y)(x-y)
=> (x.x)-(y.y)
=> x2-y2
c) (x+y)(x-y)
=> x2 - y2
d) (x+5).(x-1)
Áp dụng bài c . Ta có :
=> x(x-1) + 5(x-1)
=> x2 - x + 5x - 5
= x2 + 4x - 5
a, (x+y)(x+y)=x2+xy+xy+y2 = x2+2xy+y2
b, (x-y)(x-y)=x2-xy-xy+y2=x2-2xy+y2
c, (x+y)(x-y)=x2-xy+xy-y2=x2-y2
d, (x+5)(x-1)=x2-x+5x-5=x2+4x-5