K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

What??!!!!!!!

Đây là bài toán lớp 1 ???

Bn có nhầm ko z??

8 tháng 8 2019

toán lớp 1 ??? giỡn quài , phi logic :3

8 tháng 8 2019

Ap dung bdt AM-GM cho 2 so ko am A,B ta co 

\(\sqrt{A}+\sqrt{B}\)\(\le\)\(2\sqrt{\frac{A+B}{2}}\)

VP =\(\sqrt{AB}.\left(\sqrt{A}+\sqrt{B}\right)\le\frac{A+B}{2}.2\sqrt{\frac{A+B}{2}}\)

    =>VP2 \(\le4.\frac{\left(A+B\right)^3}{4}=\left(A+B\right)^3\left(3\right)\)

Tu (2),(3) => DPCM

19 tháng 6 2019

\(\sqrt{a^2+c^2}+\sqrt{b^2+d^2}\ge\sqrt{\left(a+b\right)^2+\left(c+d\right)^2}\)

Cần CM : \(\sqrt{\left(a+b\right)^2+\left(c+d\right)^2}\ge\left|a+b\right|-\left|c+d\right|\)

\(\Leftrightarrow\)\(\left(a+b\right)^2+\left(c+d\right)^2\ge\left(a+b\right)^2+\left(c+d\right)^2-2\left|\left(a+b\right)\left(c+d\right)\right|\)

\(\Leftrightarrow\)\(\left|\left(a+b\right)\left(c+d\right)\right|\ge0\) ( luôn đúng \(\forall\left|a+b\right|\ge\left|c+d\right|\) ) 

Do đó \(VT\ge\left|a+b\right|-\left|c+d\right|=\left(\sqrt{\left|a+b\right|}\right)^2-\left(\sqrt{\left|c+d\right|}\right)^2\)

\(=\left(\sqrt{\left|a+b\right|}+\sqrt{\left|c+d\right|}\right)\left(\sqrt{\left|a+b\right|}-\sqrt{\left|c+d\right|}\right)\)

\(\ge2\sqrt[4]{\left|a+b\right|.\left|c+d\right|}\left(\sqrt{\left|a+b\right|}-\sqrt{\left|c+d\right|}\right)\)

\(=2\left(\sqrt[4]{\left|a+b\right|^3.\left|c+d\right|}-\sqrt[4]{\left|a+b\right|.\left|c+d\right|^3}\right)\) ( đpcm ) 

.

19 tháng 6 2019

Áp dụng bất đẳng thức Mincoxki ta có 

\(\sqrt{a^2+c^2}+\sqrt{b^2+d^2}\ge\sqrt{\left(a+b\right)^2+\left(c+d\right)^2}\)

Buniacoxki \(\sqrt{\left(\left(a+b\right)^2+\left(c+d\right)^2\right)\left(1+1\right)}\ge|a+b|+|c+d|\)

Khi đó cần Cm

\(|a+b|+|c+d|\ge2\left(\sqrt{|a+b|^3|c+d|}-\sqrt{|c+d|^3|a+b|}\right)\)

Đặt \(\sqrt[4]{|a+b|}=x,\sqrt[4]{|c+d|}=y\left(x,y\ge0\right)\)

Cần Cm \(x^4+y^4\ge2\left(x^3y-xy^3\right)\left(1\right)\)

<=> \(x^3\left(x-2y\right)+y^4+2xy^3\ge0\left(2\right)\)

+ Nếu \(x\ge2y\)=> BĐT được CM

+ Nếu \(x\le2y\)

(1) <=> \(x^4+y^4+2xy^3\ge2x^3y\)

Mà \(x^4+x^2y^2\ge2x^3y\)

=> Cần CM \(y^4+2xy^3-x^2y^2\ge0\)

<=> \(y^4+xy^2\left(2y-x\right)\ge0\)luôn đúng do \(x\le2y\)

=> BĐT được CM

Dấu bằng xảy ra khi a=b=c=d=0

9 tháng 1 2021

bạn trung học hay tiểu học vậy

29 tháng 12 2015

lớp 1 chưa hok đâu bn tick nha

25 tháng 7 2020

Câu 1:
\(4\sqrt[4]{\left(a+1\right)\left(b+4\right)\left(c-2\right)\left(d-3\right)}\le a+1+b+4+c-2+d-3=a+b+c+d\)

Dấu = xảy ra khi a = -1; b = -4; c = 2; d= 3

25 tháng 7 2020

\(\frac{a^2}{b^5}+\frac{1}{a^2b}\ge\frac{2}{b^3}\)\(\Leftrightarrow\)\(\frac{a^2}{b^5}\ge\frac{2}{b^3}-\frac{1}{a^2b}\)

\(\frac{2}{a^3}+\frac{1}{b^3}\ge\frac{3}{a^2b}\)\(\Leftrightarrow\)\(\frac{1}{a^2b}\le\frac{2}{3a^3}+\frac{1}{3b^3}\)

\(\Rightarrow\)\(\Sigma\frac{a^2}{b^5}\ge\Sigma\left(\frac{5}{3b^3}-\frac{2}{3a^3}\right)=\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}+\frac{1}{d^3}\)

28 tháng 12 2017

thế mà bảo toán lớp 1 

29 tháng 12 2017

Áp dụng bđt bu nhi a, ta có \(M^2\le3\left(\frac{a}{b+c+2a}+...\right)\)

mà \(\frac{a}{b+c+2a}\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)

tương tự, ta có \(M^2\le\frac{3}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{c}{c+b}\right)=\frac{9}{4}\)

=>\(M\le\frac{3}{2}\)

dấu = xảy ra <=> a=b=c

Khi thử đổi biến chứng minh Iran 96 và cái kết.... Mà chả biết lúc đổi biến có tính sai chỗ nào ko mà kết quả nó nhìn khủng khiếp quá:(Cho a, b, c là các số không âm thỏa mãn không có 2 số nào đồng thời bằng 0. Chứng minh rằng:\(\left(ab+bc+ca\right)\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right)\ge\frac{9}{4}\)Đặt \(\left(a+b+c;ab+bc+ca;abc\right)=\left(3u;3v^2;w^3\right)\)Cần...
Đọc tiếp

Khi thử đổi biến chứng minh Iran 96 và cái kết.... Mà chả biết lúc đổi biến có tính sai chỗ nào ko mà kết quả nó nhìn khủng khiếp quá:(

Cho a, b, c là các số không âm thỏa mãn không có 2 số nào đồng thời bằng 0. Chứng minh rằng:

\(\left(ab+bc+ca\right)\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right)\ge\frac{9}{4}\)

Đặt \(\left(a+b+c;ab+bc+ca;abc\right)=\left(3u;3v^2;w^3\right)\)

Cần chứng minh

\(\left(ab+bc+ca\right)\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right)\ge\frac{9}{4}\)

\(\Leftrightarrow v^2\left(\left(3v^2+a^2\right)^2+\left(3v^2+b^2\right)^2+\left(3v^2+c^2\right)^2\right)\ge3\left(9uv^2-w^3\right)\)

\(\Leftrightarrow v^2\left(27v^4+6v^2\left(a^2+b^2+c^2\right)+a^4+b^4+c^4\right)\ge3\left(9uv^2-w^3\right)\)

\(\Leftrightarrow v^2\left(27v^4+6v^2\left(9u^2-6v^2\right)+a^4+b^4+c^4\right)\ge3\left(9uv^2-w^3\right)\)

\(\Leftrightarrow v^2\left(27v^4+6v^2\left(9u^2-6v^2\right)+81u^4-108u^2v^2+18v^4+12uw^3\right)\ge3\left(9uv^2-w^3\right)\)

\(\Leftrightarrow135u^4v^2-144u^2v^4+12uv^2w^3-27uv^2+45v^6+3w^3\ge0\)

2
8 tháng 9 2019

WTF Toán Lớp 1

8 tháng 9 2019

thấy mẹ nhầm rồi,  quy đồng quên nhân:(( mai rảnh check lại:((

10 tháng 8 2019

tth_new             

\(a^3+b^3+c^3=\left(a+b+c\right)^3\)nha !

Học tốt !