Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(x_1+x_2+x_3+...+x_{49}+x_{50}+x_{51}=0\)
\(\Rightarrow\left(x_1+x_2\right)+\left(x_3+x_4\right)+...+\left(x_{49}+x_{50}\right)+x_{51}=0\)
\(\Rightarrow1+1+...+1+x_{51}=0\)
Từ \(x_1\) đến \(x_{50}\)có 50 số:
Vậy có số số 1 là:
\(\frac{50}{2}=25\) (số 1)
\(\Rightarrow25+x_{51}=0\)
\(\Rightarrow x_{51}=0-25\)
\(\Rightarrow x_{51}=-25\)
Vậy \(x_{51}=-25\)
Trừ biểu thức trước cho đẳng thức sau, ta được: x51=-1
ĐS: x51=-1
Ta có : \(\begin{cases}x_1+x_2=1\\x_3+x_4=1\\................\\x_{49}+x_{50}=1\end{cases}\) . Cộng các đẳng thức trong ngoặc theo vế :
\(x_1+x_2+x_3+x_4+...+x_{49}+x_{50}=25\)
\(\Rightarrow25+x_{51}=0\Rightarrow x_{51}=-25\)
Để mình sửa lại cái đề bạn chút nghen !!
\(x_1+x_2=x_3+x_4=....=x_{49}+x_{50}=x_{51}+x_1\\ \Rightarrow x_1+x_2+x_3+x_4+....+x_{49}+x_{50}+x_{51}+x_1=50\\ \)
Mà : \(x_1+x_2+...+x_{51}=0\\ \Rightarrow x_1=49\\ M\text{à};x_{51}+x_1=1\\ \Rightarrow x_{51}=-50\\ \Rightarrow x_{50}=51\)
Chúc bạn học tốt !!!
à ra rồi
\(x_1+x_2=x_3+x_4=...=x_{49}+x_{50}=x_{50}+x_{51}=0\)
=>\(x_1+x_2+x_3+x_4+...+x_{49}+x_{50}+x_{50}+x_{51}=0\)
Do \(x_1+x_2+x_3+x_4+......+x_{50}+x_{51}=1\)
=>x50=0-1=-1
Đúng đề ! bài này có trong sách giải ý