Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{a+c+d}+\frac{d}{b+c+d}>\frac{a+b+c+d}{a+b+c+d}=1\)
Chứng minh tương tự để từ đó
=>M<2
Vậy 1<M<2
=> M ko là số tự nhiên
M không có giá trị tự nhiên vì để m là số tự nhiên thì các phân số phải là số tự nhiên mà tử số lớn hơn mẫu số nên số đó không phải là số tự nhiên
Vì a,b,c,d \(\inℕ^∗\Rightarrow a+b+c< +b+c+d\Rightarrow\frac{a}{a+b+c}>\frac{a}{a+b+c+d}\)
Tương tự
\(\frac{b}{a+b+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{a+c+d}>\frac{c}{a+b+c+d}\)
\(\frac{d}{b+c+d}>\frac{d}{a+b+c+d}\)
\(\Rightarrow M>\frac{a+b+c+d}{a+b+c+d}=1\)
Vì a,b,c,d \(\inℕ^∗\)\(\Rightarrow a+b+c>a+b\Rightarrow\frac{a}{a+b+c}< \frac{a}{a+b}\)
Tương tự
\(\hept{\begin{cases}\frac{b}{a+b+d}< \frac{b}{a+b}\\\frac{c}{a+c+d}< \frac{c}{c+d}\\\frac{d}{b+c+d}< \frac{d}{a+b+c+d}\end{cases}}\)
\(\Rightarrow M< \frac{a+b}{a+b}+\frac{c+d}{c+d}=2\)
Vậy \(1< M< 2\)nên M không là số tự nhiên
\(M=\frac{a}{a+b+c}+\frac{b}{a+b+d}+\frac{c}{a+c+d}+\frac{d}{b+c+d}\)\(=\frac{a+b+c+d}{a+b+c+a+b+d+a+c+d+b+c+d}\)
\(=\frac{a+b+c+d}{3\left(a+b+c+d\right)}=\frac{1}{3}\)
vậy M không phải là số tự nhiên
Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath
ta có : M > a/a+b+c+d + b/a+b+c+d + c/a+b+c+d +d/a+b+c+d = 1
M < (a/a+b + b/a+b)+(c/c+d + d/c+d) = 1+1=2
=> 1<M<2
=>M ko phải là số tự nhiên
À a,b,c,d là số tự nhiên khác 0 nhé
\(\frac{a}{b+c+d}>\frac{a}{a+b+c+d}\)
\(\frac{b}{a+c+d}>\frac{b}{a+b+c+d}\)
\(\frac{c}{a+d+b}>\frac{c}{a+b+c+d}\)
\(\frac{d}{a+c+b}>\frac{d}{a+b+c+d}\)
==> M >\(\frac{a}{a+b+c+d}+\frac{b}{a+b+c+d}+\frac{c}{a+b+c+d}+\frac{d}{a+b+c+d}=\frac{a+b+c+d}{a+b+c+d}=1\)
\(\frac{a}{b+c+d}<\frac{2a}{a+b+c+d}\)
\(\frac{b}{a+c+d}<\frac{2b}{a+b+c+d}\)
\(\frac{c}{a+d+b}<\frac{2c}{a+b+c+d}\)
\(\frac{d}{a+c+b}<\frac{2d}{a+b+c+d}\)
==> M < \(\frac{2a}{a+b+c+d}+\frac{2b}{a+b+c+d}+\frac{2c}{a+b+c+d}+\frac{2d}{a+b+c+d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)
vậy 1<M<2
vậy M k là STN