Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3a)\(\left\{{}\begin{matrix}\dfrac{1}{x-2}+\dfrac{1}{2y-1}=2\\\dfrac{2}{x-2}-\dfrac{3}{2y-1}=1\end{matrix}\right.\) (ĐK: x≠2;y≠\(\dfrac{1}{2}\))
Đặt \(\dfrac{1}{x-2}=a;\dfrac{1}{2y-1}=b\) (ĐK: a>0; b>0)
Hệ phương trình đã cho trở thành
\(\left\{{}\begin{matrix}a+b=2\\2a-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\2\left(2-b\right)-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\4-2b-3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2-b\\b=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{7}{5}\left(TM\text{Đ}K\right)\\b=\dfrac{3}{5}\left(TM\text{Đ}K\right)\end{matrix}\right.\) Khi đó \(\left\{{}\begin{matrix}\dfrac{1}{x-2}=\dfrac{7}{5}\\\dfrac{1}{2y-1}=\dfrac{3}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7\left(x-2\right)=5\\3\left(2y-1\right)=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7x-14=5\\6y-3=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{7}\left(TM\text{Đ}K\right)\\y=\dfrac{4}{3}\left(TM\text{Đ}K\right)\end{matrix}\right.\) Vậy hệ phương trình đã cho có nghiệm duy nhất (x;y)=\(\left(\dfrac{19}{7};\dfrac{4}{3}\right)\)
b) Bạn làm tương tự như câu a kết quả là (x;y)=\(\left(\dfrac{12}{5};\dfrac{-14}{5}\right)\)
c)\(\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\2\sqrt{x-1}-\sqrt{y}=4\end{matrix}\right.\)(ĐK: x≥1;y≥0)
\(\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}+2\sqrt{y}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3\sqrt{x-1}+4\sqrt{x-1}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}7\sqrt{x-1}=13\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}49\left(x-1\right)=169\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}49x-49=169\\\sqrt{y}=2\sqrt{x-1}-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{218}{49}\\y=\dfrac{4}{49}\end{matrix}\right.\left(TM\text{Đ}K\right)\)
Bài 4:
Theo đề, ta có hệ:
\(\left\{{}\begin{matrix}3\left(3a-2\right)-2\left(2b+1\right)=30\\3\left(a+2\right)+2\left(3b-1\right)=-20\end{matrix}\right.\)
=>9a-6-4b-2=30 và 3a+6+6b-2=-20
=>9a-4b=38 và 3a+6b=-20+2-6=-24
=>a=2; b=-5
a)\(\left\{{}\begin{matrix}3ax-\left(b+1\right)y=93\\bx+4ay=-3\end{matrix}\right.\)
có nghiệm \(\left(x;y\right)=\left(1;-5\right)\) ta thay \(x=1;y=-5\) vào hệ pt trên, ta có:
\(\left\{{}\begin{matrix}3a.1-\left(b+1\right).\left(-5\right)=93\\b.1+4a.\left(-5\right)=-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3a+5b+5=93\\b-20a=-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3a+5b=93-5\\-\left(20a-b\right)=-3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3a+5b=88\\20a-b=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3a+5b=88\\100a-5b=15\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}103a=103\\3a+5b=88\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=1\\3.1+5b=88\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=1\\5b=88-3=85\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}a=1\\b=17\end{matrix}\right.\)
vậy để hệ pt trên có nghiệm (1;-5) thì a=1; b=17.
b) \(\left\{{}\begin{matrix}\left(a-2\right)x+5by=25\\2ax-\left(b-2\right)y=5\end{matrix}\right.\)
có nghiệm (x; y) =(3; -1), ta thay x =3; y = -1 vào pt, ta có:
\(\left\{{}\begin{matrix}\left(a-2\right).3+5b.\left(-1\right)=25\\2a.3-\left(b-2\right).\left(-1\right)=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3a-6-5b=25\\6a+b-2=5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3a-5b=25+6\\6a+b=5+2\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}3a-5b=31\\6a+b=7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}6a-10b=62\\6a+b=7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-11b=55\\6a+b=7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=-5\\6.a-5=7\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=-5\\6a=7+5\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=-5\\6a=12\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}b=-5\\a=2\end{matrix}\right.\)
Vậy hệ pt trên có nghiệm (3; -1) khi a=2, b=-5.
a, \(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
b,\(\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
c,\(\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)
d,\(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)
a + b + c = 6
=> (a + b + c)2 = 36
<=> a2 + b2 + c2 + 2(ab + bc + ca) = 36
<=> a2 + b2 + c2 = 36 - 2.12 = 12
<=> a2 + b2 + c2 = ab + bc + ca
<=> 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ca
<=> (a2 - 2ab + b2) + (b2 - 2bc + c2) + (c2 - 2ca + a2) = 0
<=> (a - b)2 + (b - c)2 + (c - a)2 = 0
<=> a = b = c
=> a = b = c = 2
P = (a - 3)2018 + (b - 3)2018 + (c - 3)2018 = (-1)2018 + (-1)2018 + (-1)2018 = 1 + 1 + 1 = 3
a/ \(\left\{{}\begin{matrix}x+y+xy=3\\xy\left(x+y\right)=2\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x+y=a\\xy=b\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=3\\ab=2\end{matrix}\right.\)
\(\Rightarrow\) Theo Viet đảo, a và b là nghiệm của: \(t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}x+y=1\\xy=2\end{matrix}\right.\) theo Viet đảo, x và y là nghiệm của:
\(t^2-t+2=0\) (vô nghiệm)
TH2: x và y là nghiệm của: \(t^2-2t+1=0\Rightarrow t=1\Rightarrow x=y=1\)
b/ \(\left\{{}\begin{matrix}\left(x+y\right)^2-2xy=2xy+4\\x+y=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x+y=6\\xy=8\end{matrix}\right.\)
Theo Viet đảo, x và y là nghiệm: \(t^2-6t+8=0\Rightarrow\left[{}\begin{matrix}t=2\\t=4\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(4;2\right);\left(2;4\right)\)
c/ Trừ vế với vế:
\(x^2-y^2-2x+2y=y-x\)
\(\Leftrightarrow\left(x+y\right)\left(x-y\right)-3\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left(x+y-3\right)=0\Rightarrow\left[{}\begin{matrix}y=x\\y=3-x\end{matrix}\right.\)
Thay vào pt đầu:
\(\left[{}\begin{matrix}x^2-2x=x\\x^2-2x=3-x\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x\left(x-3\right)=0\\x^2-x-3=0\end{matrix}\right.\) \(\Rightarrow...\)
d/ Sao có t từ đâu vào đây thế này? :(
e/ \(\Leftrightarrow\left\{{}\begin{matrix}4x^2-2y^2=2\\xy+x^2=2\end{matrix}\right.\) \(\Rightarrow3x^2-xy-2y^2=0\)
\(\Rightarrow\left(x-y\right)\left(3x+2y\right)=0\) \(\Rightarrow\left[{}\begin{matrix}y=x\\y=-\frac{3}{2}x\end{matrix}\right.\)
Thay vào pt đầu: \(\left[{}\begin{matrix}2x^2-x^2=1\\2x^2-\left(-\frac{3}{2}x\right)^2=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2=1\\x^2=-4\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\left(x;y\right)=\left(1;1\right);\left(-1;-1\right)\)
Giải hệ sau :
Câu a :
\(\left\{{}\begin{matrix}x+y=-1\\2x+y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\-x=-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-1\\x=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-3\\x=2\end{matrix}\right.\)
Vậy ...........................
Câu b :
Đặt \(\left\{{}\begin{matrix}\dfrac{1}{x}=a\\\dfrac{1}{y}=b\end{matrix}\right.\) . Ta có :
\(\left\{{}\begin{matrix}a+b=\dfrac{1}{5}\\3a+4b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b=\dfrac{3}{5}\\3a+4b=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-b=-\dfrac{7}{5}\\3a+4b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=\dfrac{7}{5}\\a=-\dfrac{6}{5}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{7}{5}\\\dfrac{1}{y}=-\dfrac{6}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{5}{7}\\y=-\dfrac{5}{6}\end{matrix}\right.\)
Vậy..................
\(a,\left\{{}\begin{matrix}2x-y=4\\x+5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y=4\\2x+10y=6\end{matrix}\right.\left\{{}\begin{matrix}11y=2\\2x+10y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{11}\\2x+10.\dfrac{2}{11}=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{2}{11}\\2x=\dfrac{46}{11}\end{matrix}\right.\left\{{}\begin{matrix}y=\dfrac{2}{11}\\x=\dfrac{23}{11}\end{matrix}\right.\)
\(ab=\dfrac{\left(a+b\right)^2-a^2-b^2}{2}=\dfrac{13^2-89}{2}=\dfrac{80}{2}=40\)
\(P=\left(a+b\right)^3-3ab\left(a+b\right)=13^3-3\cdot40\cdot13=637\)
\(\left\{{}\begin{matrix}a+b=13\\a^2+b^2=89\end{matrix}\right.\)
\(\left(a+b\right)^2=169\)
\(a^2+2ab+b^2=169\)
\(ab=40\)
\(P=a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=13^3-3.40.13=637\)