K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2021

Thao đề bài thì nó viết như bth nha :^

29 tháng 10 2021

\(\dfrac{a}{c}=\dfrac{c}{b}=k\)

\(\Leftrightarrow\left\{{}\begin{matrix}a=ck\\c=bk\end{matrix}\right.\)

\(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{c^2k^2+b^2k^2}{b^2+c^2}=k^2\)

\(\dfrac{a}{b}=\dfrac{bk^2}{b}=k^2\)

Do đó: \(\dfrac{a^2+c^2}{b^2+c^2}=\dfrac{a}{b}\)

27 tháng 1 2019

\(b,a^2+b^2=c^2+d^2\)

\(\Rightarrow a^2+b^2+c^2+d^2=2c^2+2d^2⋮2\)

Xét \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)

\(\Rightarrow\left(a^2-a\right)+\left(b^2-b\right)+\left(c^2-c\right)+\left(d^2-d\right)\)

Ta có \(a^2-a=\left(a-1\right)a⋮2\)(vì tích của 2 số nguyên liên tiếp)

Tương tự ta có \(\left(b^2-b\right)⋮2;\left(c^2-c\right)⋮2;\left(d^2-d\right)⋮2\)

\(\Rightarrow\left(a^2-a\right)+\left(b^2-b\right)+\left(c^2-c\right)+\left(d^2-d\right)⋮2\)

\(\Rightarrow\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)⋮2\)

mà \(a^2+b^2+c^2+d^2⋮2\)nên \(a+b+c+d⋮2\)

Câu a để nghĩ tiếp 

27 tháng 1 2019

bn làm câu b được không

11 tháng 5 2023

Đây nha 

Ta có:

(1−�2)(1−�)>0(1a2)(1b)>0

⇔1+�2�>�2+�>�3+�3(1)1+a2b>a2+b>a3+b3(1)

(Vì 0<�,�<10<a,b<1)

Tương tự ta có: 

\hept{1+�2�>�3+�3(2)�+�2�>�3+�3(3)\hept{1+b2c>b3+c3(2)a+c2a>c3+a3(3)

Cộng (1), (2), (3) vế theo vế ta được

2(�3+�3+�3)<3+�2�+�2�+�2�2(a3+b3+c3)<3+a2b+b2c+c2a

 Đúng(0)
13 tháng 12 2016

a) Giải:

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)

Ta có:
\(\frac{ab}{cd}=\frac{bkb}{dkd}=\frac{b^2}{d^2}\) (1)

\(\frac{a^2-b^2}{c^2-d^2}=\frac{\left(bk\right)^2-b^2}{\left(dk\right)^2-d^2}=\frac{b^2.k^2-b^2}{d^2.k^2-d^2}=\frac{b^2.\left(k^2-1\right)}{d^2.\left(k^2-1\right)}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) suy ra \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\left(đpcm\right)\)

b) Giải:
Để \(P\in Z\Rightarrow2x-3⋮x+1\)

Ta có:
\(2x-3⋮x+1\)

\(\Rightarrow\left(2x+2\right)-5⋮x+1\)

\(\Rightarrow5⋮x+1\)

\(\Rightarrow x+1\in\left\{1;-1;5;-5\right\}\)

+) \(x+1=1\Rightarrow x=0\)

+) \(x+1=-1\Rightarrow x=-2\)

+) \(x+1=5\Rightarrow x=4\)

+) \(x+1=-5\Rightarrow x=-6\)

Vậy \(x\in\left\{0;-2;4;-6\right\}\)

 

 

\(\Rightarrow5⋮x+1\)

13 tháng 12 2016

1)Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)(tính chất dãy tỉ số bằng nhau)

\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\left(đpcm\right)\)

2)\(P=\frac{2x-3}{x+1}=\frac{2x+2-5}{x+1}=\frac{2\left(x+1\right)-5}{x+1}=2-\frac{5}{x+1}\)

\(\Rightarrow P\in Z\Leftrightarrow2-\frac{5}{x+1}\in Z\Leftrightarrow\frac{5}{x+1}\in Z\Leftrightarrow5⋮x+1\Leftrightarrow x+1\inƯ\left(5\right)\)

\(\Rightarrow x+1\in\left\{-1;-5;1;5\right\}\)

\(\Rightarrow x\in\left\{-2;-6;0;4\right\}\)

16 tháng 11 2016

Ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a.b}{c.d}\left(1\right)\)

Áp dụng tính chất dãy tỉ số bằng nhau tao có

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(2\right)\)

Từ (1) và (2) ta có ĐPCM

16 tháng 7 2015

Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt;c=dt\)

Thay vào từng vế ta có 

     \(\frac{a.b}{c.d}=\frac{bt.b}{dt.d}=\frac{b^2.t}{d^2.t}=\frac{b^2}{d^2}\) (1)

     \(\frac{\left(bt+b\right)^2}{\left(dt+d\right)^2}=\frac{b^2\left(t+1\right)^2}{d^2\left(t+1\right)^2}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) => ĐPCM

23 tháng 9 2017

a/b=c/d 
=> a/c = b/d
Áp dụng tính chất dãy tỉ số bằng nhau có : 
a/c = b/d = a+b/c+d
=> (a/c)mũ 2 = (b/d)mũ 2 = a/c.b/d= ( a+b/c+d ) mũ 2 
=>   a/c.b/d= ( a+b/c+d ) mũ 2 
=> a.b/c.d = (a+b)mũ 2 / (c + d ) mũ 2 
=> dpcm

21 tháng 4 2017

Một tuần nữa mới thi á? Đâu thi rồi. Có muốn biết đề ko?