Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\left(-\frac{1}{3}xy^2\right)\cdot\left(-3x^3y^2\right)=x^4y^4\)
hệ số là 1, bậc 4
Lũy thừa bậc n của a là n số tự nhiên a nhân với nhau
an=a.a.a.a...............a.a
n số a
Chúc bn học tốt
1.Phép cộng:
giao hoán: a + b = b + a
Kết hợp : (a + b) + c = a + ( b + c)
Phép nhân:
Giao hoán: a . b = b . a
Kết hợp: (a . b) . c = a( b . c)
2, Luỹ thừa bậc n của a là tích của n thừa số, mỡi thừa số bằng a
3, Nhân hai luỹ thừa cùng cơ số: an . am = an+m
chia hai luỹ thừa cùng cơ số: an : am = an-m ( n lớn hơn hoặc bằng m, n khác 0)
1
tính chất | phép cộng | phép nhân | phép nhân và phép cộng | |
giao hoán | a+b=b+a | a*b=b*a | k | |
kết hợp | (a+b)+c=a+(b+c) | (A*b)*c=a*(b*c) | k | |
phân phối | k co | k có | (a+b)*c=a*c+b*c | |
2 là n số tự nhiên a nhân với nhau
3 a^m/a^n=a^m-n ( phép chia )
a^m*a^n=a^m+n
Bài 5:
Dấu hiệu chia hết cho 2 là số có tận cùng là 0;2;4;6;8
Dấu hiệu chia hết cho 5 là số có tận cùng là 0;5
1 .
Tính chất | Phép cộng | Phép nhân |
Giao hoán | a + b = b +a | a . b = b . a |
Kết hợp | ( a + b ) + c = a + (b + c) | (a . b) . c = a . ( b . c ) |
Phân phối của phép nhân với phép cộng | ( a + b ) . c = a . b + b . c |
2 . Luỹ thừa bậc n của a là tích của n thừa số bằng nhau , mỗi thừa số bằng a
3 . am . an = am + n
am : an = am - n
4 . Ta nói số tự nhiên a chia hết cho số tự nhiên b khi có số tự nhiên q sao cho : a = bq
5 . Đối với biểu thức không có ngoặc :
Ta thực hiện phép tính nâng lên luỹ thừa , rồi đến nhân và chia , cuối cùng là cộng và trừ
Tổng quát : Luỹ thừa -> Nhân và chia -> Cộng và trừ
Đối với biểu thức có dấu ngoặc
Từ ngoặc tròn đến ngoặc vuông rồi cuối cùng đến ngoặc vuông
Tổng quát : ( ) -> [ ] -> { }
\(A=1^2+2^2+3^2+...+n^2=\)
\(=1\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+n\left[\left(n+1\right)-1\right]=\)
\(=1.2-1+2.3-2+3.4-3+...+n\left(n+1\right)-n=\)
\(=\left[1.2+2.3+3.4+...+n\left(n+1\right)\right]-\left(1+2+3+...+n\right)=\)
Đặt
\(B=1.2+2.3+3.4+...+n\left(n+1\right)\)
\(\Rightarrow3B=1.2.3+2.3.3++3.4.3+n\left(n+1\right).3=\)
\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n.\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]=\)
\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-\left(n-1\right)n\left(n+1\right)+n\left(n+1\right)\left(n+2\right)=\)
\(=n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow B=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)
\(\Rightarrow A=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}-\dfrac{n\left(n+1\right)}{2}\) Là 1 đa thức bậc 3