Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(11a\right)^2+\left(11b\right)^2=1100a+11b\)
\(\Leftrightarrow11a^2+11b^2=100a+b\)
\(\Leftrightarrow11\left(a^2+b^2\right)=99a+a+b\)
\(\Rightarrow a+b⋮11\)
Furthermore, \(1\le a;b\le9\Rightarrow2\le a+b\le18\)
\(\Rightarrow a+b=11\)
Call the smallest digit a => 3-digit number a, 2a, 3a with 3a ≤ 9 => a ≤ 3. Find the number divisible by 18, which is divisible by 9, so (a + 2a + 3a) = 6a is divisible by 9 => a is divisible by 3, so a = 3 => 3 digits are 3, 6, 9
The number to find is even by dividing by 2, so the last digit is 6
=> 396 or 936
Call the smallest digit a => 3-digit number a, 2a, 3a with 3a ≤ 9 => a ≤ 3. Find the number divisible by 18, which is divisible by 9, so (a + 2a + 3a) = 6a is divisible by 9 => a is divisible by 3, so a = 3 => 3 digits are 3, 6, 9
The number to find is even by dividing by 2, so the last digit is 6
=> 396 or 936
\(22^n=2^n.11^n\)
\(122!=1.2...11...22...33...44...55...66...77...88...99...110...121\)
\(=11^{11}.A\)
\(\Rightarrow n_{max}=11\)
x^4+ax+b chia hết cho x^2-4
=>x^4+ax+b chia hết cho x-2 và x+2
x^4+ax+b=(x-2)(x^3+2x^2+4x+a+8)+(b+2(a+8))
x^4+ax+b chia hết cho x-2=>b+2(a+8)=0
x^4+ax+b=(x+2)(x^3-2x^2+4x+a-8)+(b+2(8-a))
x^4+ax+b chia hết cho x+2=>b+2(8-a)=0
=>b+2(a+8)=b+2(8-a)
<=>2a+16=16-2a
<=>4a=0
<=>a=0=>b=-16
Tại a=0,b=-16 ,giá trị của a+b=0+(-16)=-16
Vác máy tính lên bấm thử mấy số nhỏ thấy \(1156=34^2,111556=334^2\).
Vậy có lẽ \(\overline{1...15...56}=\overline{3...34}^2\) trong đó có 2011 số 3.
Hiện tại chưa biết cách chứng minh.
Cái bạn chưa biết là cái mình đang cần. Nếu giúp được cảm ơn bạn nhiều!
Tổng các chữ số của một số có hai chữ số là 11. khi bạn đảo ngược chữ số của nó bạn giảm số 9. Tìm số đó!
Chị viết đề bằng tiếng anh à!