Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình quên không nói là đề bài yêu cầu chứng minh 2 bổ đề trên.
Tham khảo:
a) Để xác định tập hợp \(A = ( - \infty ;0] \cup [ - \pi ;\pi ]\), ta vẽ sơ đồ sau đây:
Từ sơ đồ, ta thấy \(A = ( - \infty ;\pi ]\)
b) Để xác định tập hợp \(B = [ - 3,5;2] \cap ( - 2;3,5)\), ta vẽ sơ đồ sau đây:
Từ sơ đồ, ta thấy \(B = ( - 2;2]\)
c) Để xác định tập hợp \(C = ( - \infty ;\sqrt 2 ] \cap [1; + \infty )\), ta vẽ sơ đồ sau đây:
Từ sơ đồ, ta thấy \(C = [1;\sqrt 2 ]\)
d) Để xác định tập hợp \(D = ( - \infty ;\sqrt 2 ]{\rm{\backslash }}[1; + \infty )\), ta vẽ sơ đồ sau đây:
Từ sơ đồ, ta thấy \(D = ( - \infty ;1)\)
\(\sum\) còn có ý nghĩa khác đó bạn.
Trong một số trường hợp khi giải toán, bạn sẽ gặp các biểu thức có dạng khá khó chịu như \(a_1+a_2+a_3+...+a_n\). Để tránh việc phải viết lặp đi lặp lại cái biểu thức dài loằng ngoằng đó thì ta sử dụng kí hiệu:
\(\sum\limits^n_{i=1}a_i=a_1+a_2+...+a_n\)
Ví dụ như bất đẳng thức Schwarz nổi tiếng:
\(\dfrac{x_1^2}{a_1}+\dfrac{x_2^2}{a_2}+...+\dfrac{x_n^2}{a_n}\ge\dfrac{\left(x_1+x_2+...+x_n\right)^2}{a_1+a_2+...+a_n}\)
Có thể viết gọn lại là:
\(\sum\limits^n_{i=1}\dfrac{x_i^2}{a_i}\ge\dfrac{\left(\sum\limits^n_{i=1}x_i\right)^2}{\sum\limits^n_{i=1}a_i}\).
Hay ta có 1 đẳng thức thú vị sau:
\(\sqrt{1^3+2^3+...+n^3}=1+2+...+n\)
Ta có thể viết gọn đẳng thức này thành:
\(\sqrt{\sum\limits^n_{i=1}i^3}=\sum\limits^n_{i=1}i\)
Đó là 1 vài ví dụ để thể hiện lợi ích của dấu \(\sum\). Mà mình quên chưa nói với bạn là \(\sum\) đọc là sigma (xích-ma).
a,\(\int\limits^{\frac{\Pi}{6}}_0\frac{sin\left(2x+x\right)}{cos^2x}dx=\int\limits^{\frac{\Pi}{6}}_0\frac{sin2x.cosx+cos2x.sinx}{cos^2x}dx=\int\limits^{\frac{\Pi}{6}}_0\frac{2cos^2x.sinx+\left(2cos^2x-1\right)sinx}{cos^2x}dx=\int\limits^{\frac{\Pi}{6}}_0\frac{4cos^2x.sinx}{cos^2x}dx+\int\limits^{\frac{\Pi}{6}}_0\frac{d\left(cosx\right)}{cos^2x}=\int\limits^{\frac{\Pi}{6}}_0sinxdx-\frac{1}{cosx}\)
thay cận vào nhé