K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2017

0 , 2 - 3 >  0 , 2 - 2

22 tháng 8 2018

1 , 7 3  > 1

29 tháng 8 2018

0 , 3 2 < 1

30 tháng 1 2018

1 / 5 2 <  1 / 5 1 , 4

25 tháng 10 2017

6 π >  6 3 , 14

14 tháng 3 2019

 

 

8 tháng 9

✅ Kết luận:

Hàm A: \(y = - x^{2} + 2 x + 3\)

  • Đồng biến: \(\left(\right. - \infty , 1 \left.\right)\)
  • Nghịch biến: \(\left(\right. 1 , + \infty \left.\right)\)

Hàm B: \(y = \frac{1}{3} x^{3} + 3 x^{2} + 5 x + 2\)

  • Đồng biến: \(\left(\right. - \infty , - 5 \left.\right) \cup \left(\right. - 1 , + \infty \left.\right)\)
  • Nghịch biến: \(\left(\right. - 5 , - 1 \left.\right)\)

a: \(y=-x^2+2x+3\)

=>\(y^{\prime}=-2x+2\)

Đặt y'<0

=>-2x+2<0

=>-2x<-2

=>x>1

=>Hàm số nghịch biến trên (1;+∞)

Đặt y'>0

=>-2x+2>0

=>-2x>-2

=>x<1

=>Hàm số đồng biến trên (-∞;1)

b: \(y=\frac13x^3+3x^2+5x+2\)

=>\(y^{\prime}=\frac13\cdot3x^2+3\cdot2x+5=x^2+6x+5=\left(x+1\right)\left(x+5\right)\)

Đặt y'>0

=>(x+1)(x+5)>0

=>\(\left[\begin{array}{l}x>-1\\ x<-5\end{array}\right.\)

=>Hàm số đồng biến trên các khoảng (-1;+∞) và (-∞;-5)

Đặt y'<0

=>(x+1)(x+5)<0

=>-5<x<-1

=>Hàm số nghịch biến trên khoảng (-5;-1)

21 tháng 9 2021

bgxvcgđ

31 tháng 3 2017

*Xét hàm số: y= -x3 + 2x2 – x – 7

Tập xác định: D = R

\(y'\left(x\right)=-3x^2+4x-1\)\(y'\left(x\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)

y’ > 0 với và y’ < 0 với \(x \in ( - \infty ,{1 \over 3}) \cup (1, + \infty )

Vậy hàm số đồng biến trong (\(\dfrac{1}{3}\),1)(\(\dfrac{1}{3}\),1) và nghịch biến trong (−∞,13)∪(1,+∞)(−∞,13)b) Xét hàm số: \(y=\dfrac{x-5}{1-x}\).

Tập xác định: D = R{1}

\(y'=\dfrac{-4}{\left(1-x\right)^2}< 0,\forall x\in D\)

Vậy hàm số nghịch biến trong từng khoảng (-,1) và (1, +)