K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2020

Ta có: \(\left(a+2b-3c-d\right)\left(a+2b+3c+d\right)\)

\(=\left[\left(a+2b\right)-\left(3c+d\right)\right]\cdot\left[\left(a+2b\right)+\left(3c+d\right)\right]\)

\(=\left(a+2b\right)^2-\left(3c+d\right)^2\)

\(=a^2+4ab+4b^2-9c^2-6cd-d^2\)

28 tháng 8 2020

( a + 2b - 3c - d )( a + 2b + 3c + d )

= [ ( a + 2b ) - ( 3c + d ) ][ ( a + 2b ) + ( 3c + d ) ]

= ( a + 2b )2 - ( 3c + d )2

= a2 + 4ab + 4b2 - ( 9c2 + 6cd + d2 )

= a2 + 4ab + 4b2 - 9c2 - 6cd - d2

8 tháng 4 2015

a) ∆ABC có cạnh BC lớn nhất nên chân đường cao kẻ từ A phải nằm giữa B và C

=> HB  + HC = BC

∆AHC vuông tại H => HC < AC

∆AHB vuông tại H => HB < AB

Cộng theo vế hai bất đẳng thức ta có:

HB + HC < AC + AB

Hay BC < AC + AB

b) BC là cạnh lớn nhất nên suy ra AB < BC và AC < BC

Do đó AB < BC + AC; AC < BC +AB

(cộng thêm AC hoặc AB vào vế phải của bất đẳng thức)

27 tháng 3 2016

a) Xét tam giác vuông AHC có AC là cạnh lớn nhất ( cạnh lớn nhất trong tam giác vuông)                                    => AC>HC (1)                                                                                                                                                 Xét tam giác vuông AHB có AB là cạnh lớn nhất (canh lớn nhất trong tam giác vuông)                                        =>AB>HB  (2)                                                                                                                                                 Ta có : HC+HB+BC ( H nằm giũa A và C)  (3)                                                                                                  Từ (1) , (2) và (3) => AC+AB>BC                                                                                                                    b)Xét tam giác ABC có BC là cạnh lớn nhất(gt)                                                                                               =>BC>AB                                                                                                                                                  Ta có : AC>0 => BC+AC>AB                                                                                                                       Xét tam giác ABC có BC là cạnh lớn nhất (gt) =>BC>AC                                                                             Vì AB>0=>BC+AB>AC

23 tháng 1 2019

Sử dụng định lý Pi-ta-go

tk nha!

23 tháng 1 2019

những đẳng thức nào ý bạn

bài c/m trang 136 đấy bạn

19 tháng 4 2017

a) ∆ABC có cạnh BC lớn nhất nên chân đường cao kẻ từ A phải nằm giữa B và C

=> HB + HC = BC

∆AHC vuông tại H => HC < AC

∆AHB vuông tại H => HB < AB

Cộng theo vế hai bất đẳng thức ta có:

HB + HC < AC + AB

Hay BC < AC + AB

b) BC là cạnh lớn nhất nên suy ra AB < BC và AC < BC

Do đó AB < BC + AC; AC < BC +AB

(cộng thêm AC hoặc AB vào vế phải của bất đẳng thức)

5 tháng 9 2017

Xét tam giác ABC vì BC là cạnh lớn nhất nên AB < BC và AC < BC.

Mà ta lại có: AC > 0 và AB > 0 hay 0 < AC và 0 < AB

Giải bài 20 trang 64 SGK Toán 7 Tập 2 | Giải toán lớp 7

⇒ Đpcm

 

30 tháng 8 2021

\(10\cdot9\cdot8\cdot7\cdot6\div\left(5+4\cdot3-2\right)+1=2017\)

30 tháng 8 2021

10⋅9⋅8⋅7⋅6÷(5+4⋅3−2)+1=2017 =)

15 tháng 12 2018

Theo giả thiết, tam giác ABC có độ dài cạnh BC là lớn nhất nên chân đường vuông góc kẻ từ A đến cạnh BC chắn chắn phải nằm giữa B và C.

Suy ra H nằm giữa B và C.

⇒ HB + HC = BC

+) Xét tam giác AHB vuông tại H ta có: HB < AB (1) (vì trong tam giác vuông cạnh huyền là cạnh lớn nhất)

+) Xét tam giác AHC vuông tại H ta có: HC < AC (2) (vì trong tam giác vuông cạnh huyền là cạnh lớn nhất)

Lấy (1) + (2) ta được:

HB + HC < AB + AC

Mà HB + HC = BC suy ra BC < AB + AC hay AB + AC > BC