K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Sử dụng máy tính cầm tay ta có: \(cos1,16 \approx 0,4\)nên \(cosx = cos1,16\) do đó các nghiệm của phương trình là \(x = 1,16 + k2\pi \) hoặc \(x = -1,16 + k2\pi \)với \(k\; \in \;\mathbb{Z}\).

Vậy tập nghiệm của phương trình là \(S = \{ 1,16 + k2\pi ;-1,16 + k2\pi ,k\; \in \;\mathbb{Z}\} \).

b) Sử dụng máy tính cầm tay ta có: \(tanx{\rm{ }} = \;\sqrt 3 \) nên \(tanx = \;tan\frac{\pi }{3} \Leftrightarrow x = \;\frac{\pi }{3} + k\pi ,{\rm{ }}k\; \in \;\mathbb{Z}.\)

Vậy tập nghiệm của phương trình là \(S = \;\left\{ {\frac{\pi }{3} + k\pi ,{\rm{ }}k\; \in \;\mathbb{Z}} \right\}.\)

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

a) Điều kiện xác định là: \(x \ne \frac{\pi }{2} + k\pi ,k \in \mathbb{Z}\)

Vì tan0 = 0 nên phương trình tanx = 0 có các nghiệm \(x = k\pi ,{\rm{ }}k\; \in \;\mathbb{Z}.\)

Vậy tập nghiệm của phương trình là: \(S = \{ k\pi ,{\rm{ }}k\; \in \;\mathbb{Z}\} .\)

\(\begin{array}{*{20}{l}}{b){\rm{ }}tan\left( {30^\circ -3x} \right) = tan75^\circ }\\{ \Leftrightarrow \;tan\left( {3x-30^\circ } \right) = tan\left( {-{\rm{ }}75^\circ } \right)}\\{ \Leftrightarrow \;3x-30^\circ  = -75^\circ  + k360^\circ ,k\; \in \;\mathbb{Z}}\\{ \Leftrightarrow \;3x = -\,45^\circ  + k360^\circ ,k\; \in \;\mathbb{Z}}\\{ \Leftrightarrow \;x = -15^\circ  + k120^\circ ,k\; \in \;\mathbb{Z}.}\end{array}\)

Vậy tập nghiệm của phương trình là: \(S = \{ -15^\circ  + k120^\circ ,{\rm{ }}k\; \in \;\mathbb{Z}\} .\)

\(\begin{array}{l}{\rm{c, cos}}\left( {x + \frac{\pi }{{12}}} \right) = {\rm{cos}}\frac{{3\pi }}{{12}}\\ \Leftrightarrow \left[ \begin{array}{l}x + \frac{\pi }{{12}} = \frac{{3\pi }}{{12}} + k2\pi \\x + \frac{\pi }{{12}} =  - \frac{{3\pi }}{{12}} + k2\pi \end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{6} + k2\pi \\x =  - \frac{\pi }{3} + k2\pi \end{array} \right.\left( {k \in \mathbb{Z}} \right)\end{array}\)

Vậy tập nghiệm của phương trình là \(S = \left\{ {\frac{\pi }{6} + k2\pi ; - \frac{\pi }{3} + k2\pi ,k \in \mathbb{Z}} \right\}\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Vì \(cotx = 1\)nên phương trình \(cotx = 1\) có các nghiệm là \(x = \frac{\pi }{4} + k\pi ,k \in \mathbb{Z}\).

Vậy tập nghiệm của phương trình là: \(S = \left\{ {\frac{\pi }{4} + k\pi ,k \in \mathbb{Z}} \right\}\).

\(\begin{array}{*{20}{l}}{b){\rm{ }}cot\left( {3x + 30^\circ } \right) = cot75^\circ }\\{ \Leftrightarrow \;3x + 30^\circ  = 75^\circ  + k180^\circ ,{\rm{ }}k\; \in \;\mathbb{Z}}\\{ \Leftrightarrow \;3x = 45^\circ  + k180^\circ ,{\rm{ }}k\; \in \;\mathbb{Z}.}\\{ \Leftrightarrow \;x = 15^\circ  + k60^\circ ,{\rm{ }}k\; \in \;\mathbb{Z}}\end{array}\)

Vậy tập nghiệm của phương trình là: \(S = \{ 15^\circ  + k60^\circ ,{\rm{ }}k\; \in \;\mathbb{Z}\} .\)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a, Điều kiện xác định: \(x \ne 90^\circ  + k180^\circ \).

Ta có:\({\rm{ }}tanx = tan55^\circ  \Leftrightarrow x = 55^\circ  + k180^\circ ,{\rm{ }}k\; \in \;\mathbb{Z}\,\,(TM).\)

b, Điều kiện xác định: \(2x + \frac{\pi }{4} \ne \frac{\pi }{2} + k\pi  \Leftrightarrow x \ne \frac{\pi }{8} + k\pi ,k \in \mathbb{Z}.\)

Ta có: \(\tan \left( {2x + \frac{\pi }{4}} \right) = 0 \Leftrightarrow 2x + \frac{\pi }{4} = k\pi  \Leftrightarrow x = -\frac{\pi }{8} + k\frac{\pi }{2},k \in \mathbb{Z}\,\,(TM).\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Với a = 0, b = 1, hàm số \(f(x) = \left\{ {\begin{array}{*{20}{l}}{2x}&{{\rm{  }}x < 2}\\4&{{\rm{  }}x = 2}\\{ - 3x + 1}&{{\rm{ }}\,x > 2}\end{array}} \right.\)

Ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( { - 3x + 1} \right) =  - 3.2 + 1 =  - 5\\\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {2x} \right) = 2.2 = 4\\ \Rightarrow \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) \ne \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right)\end{array}\)

Do đó không tồn tại giới hạn \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\)

Vậy hàm số không liên tục tại x = 2.

b) Ta có:

 \(\begin{array}{l}\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( { - 3x + b} \right) =  - 3.2 + b =  - 6 + b\\\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( {2x + a} \right) = 2.2 + a = 4 + a\\f\left( 2 \right) = 4\end{array}\)

Để hàm số liên tục tại x = 2 thì \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = f\left( 2 \right)\)

\( \Leftrightarrow  - 6 + b = 4 + a = 4 \Leftrightarrow \left\{ \begin{array}{l}4 + a = 4\\ - 6 + b = 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 0\\b = 10\end{array} \right.\)

Vậy với a = 0 và b = 10 thì hàm số liên tục tại x = 2.

c) Tập xác định của hàm số là: ℝ.

Với x < 2 thì \(f\left( x \right) = 2x + a\) là hàm đa thức nên liên tục.

Với x > 2 thì \(f\left( x \right) = -3x + b\) là hàm đa thức nên liên tục.

Do đó để hàm số liên tục trên ℝ thì hàm số \(f\left( x \right)\) liên tục tại x = 2.

Vậy với a = 0 và b = 10 thỏa mãn điều kiện.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

1 vòng tròn tương ứng với 2π hay \({360^o}\). Vậy \(3\frac{1}{5}\) vòng là \(3\frac{1}{5}{.360^o} = 1{\rm{ }}152^\circ \).

Đáp án: C

22 tháng 9 2023

\(3\dfrac{1}{5}=\dfrac{16}{5}\) vòng ngược chiều kim đồng hồ :

\(\dfrac{16}{5}.2\pi=\dfrac{32\pi}{5}=1152^o\rightarrow Chọn\) \(C\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Trên các khoảng \(\left( { - \infty ;2} \right)\) và \(\left( {2; + \infty } \right)\), \(f\left( x \right)\) là hàm đa thức nên liên tục trên từng khoảng \(\left( { - \infty ;2} \right)\) và \(\left( {2; + \infty } \right)\).

Ta có: \(f\left( 2 \right) = {2^2} + 2.2 + m = m + 8\)

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} \left( {{x^2} + 2{\rm{x}} + m} \right) = {2^2} + 2.2 + m = m + 8\\\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} \left( 3 \right) = 3\end{array}\)

Để hàm số \(y = f\left( x \right)\) liên tục liên tục tại \(x = 2\) thì

\(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = f\left( 2 \right) \Leftrightarrow m + 8 = 3 \Leftrightarrow m =  - 5\).

Vậy với \(m =  - 5\) thì hàm số \(y = f\left( x \right)\) liên tục tại \(x = 2\).

Chọn D.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \({3^{x + 2}} = \sqrt[3]{9} \Leftrightarrow {3^{x + 2}} = {9^{\frac{1}{3}}} \Leftrightarrow {3^{x + 2}} = {\left( {{3^2}} \right)^{\frac{1}{3}}} \Leftrightarrow {3^{x + 2}} = {3^{\frac{2}{3}}} \Leftrightarrow x + 2 = \frac{2}{3} \Leftrightarrow x =  - \frac{4}{3}\)

b) \({2.10^{2{\rm{x}}}} = 30 \Leftrightarrow {10^{2{\rm{x}}}} = 15 \Leftrightarrow 2{\rm{x}} = \log 15 \Leftrightarrow x = \frac{1}{2}\log 15\)

c) \({4^{2{\rm{x}}}} = {8^{2{\rm{x}} - 1}} \Leftrightarrow {\left( {{2^2}} \right)^{2{\rm{x}}}} = {\left( {{2^3}} \right)^{2{\rm{x}} - 1}} \Leftrightarrow {2^{4{\rm{x}}}} = {2^{6{\rm{x}} - 3}} \Leftrightarrow 4{\rm{x}} = 6{\rm{x}} - 3 \Leftrightarrow  - 2{\rm{x}} =  - 3 \Leftrightarrow x = \frac{3}{2}\).

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Hàm số \(C\left( x \right)\) có tập xác định là nửa khoảng \(\left( {0;24} \right]\).

Hàm số \(C\left( x \right)\) xác định trên từng khoảng \(\left( {0;2} \right),\left( {2;4} \right)\) và \(\left( {4;24} \right)\) nên hàm số liên tục trên các khoảng đó.

Ta có: \(C\left( 2 \right) = 60000\)

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {2^ + }} C\left( x \right) = \mathop {\lim }\limits_{x \to {2^ + }} 100000 = 100000\\\mathop {\lim }\limits_{x \to {2^ - }} C\left( x \right) = \mathop {\lim }\limits_{x \to {2^ - }} 60000 = 60000\end{array}\)

Vì \(\mathop {\lim }\limits_{x \to {2^ + }} C\left( x \right) \ne \mathop {\lim }\limits_{x \to {2^ - }} C\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 2} C\left( x \right)\).

Vậy hàm số \(C\left( x \right)\) không liên tục tại điểm \({x_0} = 2\).

Ta có: \(C\left( 4 \right) = 100000\)

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {4^ + }} C\left( x \right) = \mathop {\lim }\limits_{x \to {4^ + }} 200000 = 200000\\\mathop {\lim }\limits_{x \to {4^ - }} C\left( x \right) = \mathop {\lim }\limits_{x \to {4^ - }} 100000 = 100000\end{array}\)

Vì \(\mathop {\lim }\limits_{x \to {4^ + }} C\left( x \right) \ne \mathop {\lim }\limits_{x \to {4^ - }} C\left( x \right)\) nên không tồn tại \(\mathop {\lim }\limits_{x \to 4} C\left( x \right)\).

Vậy hàm số \(C\left( x \right)\) không liên tục tại điểm \({x_0} = 4\).

Ta có: \(C\left( {24} \right) = 200000\)

\(\mathop {\lim }\limits_{x \to {{24}^ - }} C\left( x \right) = \mathop {\lim }\limits_{x \to {{24}^ - }} 200000 = 200000 = C\left( {24} \right)\)

Vậy hàm số \(C\left( x \right)\) liên tục trái tại điểm \({x_0} = 24\).

Vậy hàm số \(C\left( x \right)\) liên tục trên các khoảng \(\left( {0;2} \right),\left( {2;4} \right)\) và nửa khoảng \(\left( {4;24} \right]\).

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Hàm số \(F\left( r \right)\) có tập xác định là \(\left( {0; + \infty } \right)\).

Hàm số \(F\left( r \right)\) xác định trên từng khoảng \(\left( {0;R} \right)\) và \(\left( {R; + \infty } \right)\) nên hàm số liên tục trên các khoảng đó.

Ta có: \(F\left( R \right) = \frac{{GM}}{{{R^2}}}\)

\(\begin{array}{l}\mathop {\lim }\limits_{r \to {R^ + }} F\left( r \right) = \mathop {\lim }\limits_{r \to {R^ + }} \frac{{GM}}{{{r^2}}} = \frac{{GM}}{{{R^2}}}\\\mathop {\lim }\limits_{r \to {R^ - }} F\left( r \right) = \mathop {\lim }\limits_{r \to {R^ - }} \frac{{GMr}}{{{R^3}}} = \frac{{GMR}}{{{R^3}}} = \frac{{GM}}{{{R^2}}}\end{array}\)

Vì \(\mathop {\lim }\limits_{r \to {R^ + }} F\left( r \right) = \mathop {\lim }\limits_{r \to {R^ - }} F\left( r \right) = \frac{{GM}}{R}\) nên \(\mathop {\lim }\limits_{r \to R} F\left( r \right) = \frac{{GM}}{R} = F\left( R \right)\).

Vậy hàm số \(F\left( r \right)\) liên tục tại điểm \({r_0} = R\).

Vậy hàm số \(F\left( r \right)\) liên tục trên \(\left( {0; + \infty } \right)\).