\(\left(x-3\right)\left(5-x\right)\l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có  \(\left(x-3\right)\left(5-x\right)=-\left(x^2-8x+15\right)\)

\(=-\left(x^2-8x+16-1\right)=-\left(x-4\right)^2+1\)

Vì \(3\le x\le5\)nên \(-\left(x-4\right)^2+1\le1\)hay \(\left(x-3\right)\left(5-x\right)\le1\)

14 tháng 6 2019

Em làm Cách 2: Sử dụng BĐT \(xy\le\frac{\left(x+y\right)^2}{4}.\)Chứng minh :Biến đổi tương đương ta được \(\left(x-y\right)^2\ge0\)(luôn đúng)

Với \(3\le x\le5\Rightarrow\hept{\begin{cases}x-3\ge0\\5-x\ge0\end{cases}}\)

Khi đó: \(\left(x-3\right)\left(5-x\right)\le\frac{\left(x-3+5-x\right)^2}{4}=1\)

Dấu '=' xảy ra khi \(x-3=5-x\Leftrightarrow x=4\left(tmđk\right)\)

2 tháng 12 2020

Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)

\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)

\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)

\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)

\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)

Dấu "=" xảy ra khi x=y=z