Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 3 + 2 = 7 là mệnh đề và là mệnh đề sai
Vì 3 + 2 = 5 ≠ 7
b) 4 + x = 3 là mệnh đề chứa biến
Vì với mỗi giá trị của x ta được một mệnh đề.
Ví dụ : với x = 1 ta có mệnh đề « 4 + 1 = 3 ».
với x = –1 ta có mệnh đề « 4 + (–1) = 3 ».
với x = 0 ta có mệnh đề 4 + 0 = 3.
c) x + y > 1 là mệnh đề chứa biến
Vì với mỗi cặp giá trị của x, y ta được một mệnh đề.
Ví dụ : x = 0 ; y = 1 ta có mệnh đề « 0 + 1 > 1 »
x = 1 ; y = 3 ta có mệnh đề « 1 + 3 > 1 ».
d) 2 – √5 < 0 là mệnh đề và là mệnh đề đúng
Vì 2 = √4 và √4 < √5.
Các khẳng định là mệnh đề là:
a) \(3 + 2 > 5\)
d) \(1 - \sqrt 2 < 0\)
Các khẳng định là mệnh đề chứa biến là:
b) \(1 - 2x = 0\)
c) \(x - y = 2\)
a) Mệnh đề P đúng, vì: \(\left| x \right| = \left\{ \begin{array}{l}x\quad \;\;(x \ge 0)\\ - x\quad (x < 0)\end{array} \right.\) nên \(\left| x \right| \ge x\).
Mệnh đề Q sai vì chỉ có các số \( \pm \sqrt {10} \) có bình phương bằng 10, nhưng \(\sqrt {10} \) và \( - \sqrt {10} \) đều không là số tự nhiên.
Mệnh đề R đúng vì \(x = - 1 + \sqrt 2 \in \mathbb{R}\) thỏa mãn \({x^2} + 2x - 1 = 0.\)
b) Có thể viết lại các mệnh đề trên như sau:
P: “\(\forall x \in \mathbb{R},\;\left| x \right| \ge x\)”
Q: “\(\exists n \in \mathbb{N},{n^2} = 10\)”
R: “\(\exists x \in \mathbb{R},\;{x^2} + 2x - 1 = 0\)”
Đáp án: B
f(x)2 + g(x)2 = 0 ⇔ f(x) = 0 và g(x) = 0. Nghĩa là H là tập hợp bao gồm các phần tử vừa thuộc E vừa thuộc F hay H = E ∩ F
Bài 1:
a/ Với \(x=0\Rightarrow0-0+1>0\) đúng
Vậy mệnh đề đúng
Phủ định: \(\forall x\in R;x^3-x^2+1\le0\)
Hoặc: \(∄x\in R,x^3-x^3+1>0\)
b/ \(x^4-x^2+1=\left(x^2+1\right)^2-3x^2=\left(x^2+\sqrt{3}x+1\right)\left(x^2-\sqrt{3}x+1\right)\)
Vậy mệnh đề đã cho là đúng
Phủ định: \(\exists x\in R,x^4-x^2+1\ne\left(x^2+\sqrt{3}x+1\right)\left(x^2-\sqrt{3}x+1\right)\)
Câu 2:
a/ Với \(x=0\Rightarrow0>-2\) nhưng \(0^2< 4\)
\(\Rightarrow\) Mệnh đề sai
b/ Mệnh đề đúng do \(x\in N\Rightarrow x\ge0\)
\(x>2\Rightarrow x^2>4\) (2 vế của BĐT đều không âm thì có thể bình phương 2 vế)
Câu 3:
P là mệnh đề đúng
\(P:\) "\(\forall x\in R,x\in Q\Rightarrow2x\in Q\)"
\(\overline{P}:\) "\(\exists x\in R,x\in Q\Rightarrow2x\notin Q\)"
\(\overline{P}\) là mệnh đề sai
Chứng minh P đúng:
Do x hữu tỉ, đặt \(x=\frac{a}{b}\) với a; b là các số nguyên \(\left(a;b\right)=1\) và \(b\ne0\)
\(\Rightarrow2x=\frac{2a}{b}\)
Do a nguyên \(\Rightarrow2a\) nguyên \(\Rightarrow\frac{2a}{b}\) hữu tỉ
b/ Mệnh đề đảo của P:
" Với mọi số thực x, nếu 2x là số hữu tỉ thì x là số hữu tỉ"
Chứng minh tương tự như trên
c/ "Với mọi số thực x thì x là số hữu tỉ khi và chỉ khi 2x là số hữu tỉ"
Bài 4:
a/ Là mệnh đề sai, ví dụ \(x=1;y=1\)
b/ Là mệnh đề đúng, ví dụ: \(x=1;y=1\)
a) \(x^2+y^2=0\) ( 1 )
Ta có :
\(x^2\ge0\forall x\)
\(y^2\ge0\forall x\)
Để ( 1 ) = 0
\(\Rightarrow\hept{\begin{cases}x^2=0\\y^2=0\end{cases}}\)
\(\hept{\begin{cases}x=0\\y=0\end{cases}}\)
\(x^2+y^2=0\) với \(x=y=0\) là mệnh đề đúng
\(x^2+y^2=0\) với \(\orbr{\begin{cases}x\ne0\\y\ne0\end{cases}}\) là mệnh đề sai
b) \(x^2+y^2\ne0\) ( 2 )
Vì \(x^2\ge0\forall x\)
\(y^2\ge0\forall y\)
Nên \(x^2+y^2\ne0\Leftrightarrow\orbr{\begin{cases}x^2\ne0\\y^2\ne0\end{cases}}\)
\(\orbr{\begin{cases}x\ne0\\y\ne0\end{cases}}\)
\(x^2+y^2\ne0\) với \(\orbr{\begin{cases}x\ne0\\y\ne0\end{cases}}\) là mệnh đề đúng
\(x^2+y^2\ne0\) với \(\hept{\begin{cases}x=0\\y=0\end{cases}}\) là mệnh đề sai
đéo bít