\(\dfrac{a}{bc}+\dfrac{c}{ba}+\dfrac{b}{ac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2022

Coi như a, b, c là số dương

Áp dụng BĐT Cô-si ta có:

\(\dfrac{a}{bc}+\dfrac{c}{ba}\ge2\sqrt{\dfrac{a}{bc}.\dfrac{c}{ba}}=2\sqrt{\dfrac{1}{b^2}}=\dfrac{2}{b}\left(1\right)\)

Dấu "=" xảy ra ...

\(\dfrac{a}{bc}+\dfrac{b}{ac}\ge2\sqrt{\dfrac{a}{bc}.\dfrac{b}{ac}}=2\sqrt{\dfrac{1}{c^2}}=\dfrac{2}{c}\left(2\right)\)

Dấu "=" xảy ra ...

\(\dfrac{c}{ba}+\dfrac{b}{ac}\ge2\sqrt{\dfrac{c}{ba}+\dfrac{b}{ac}}=2\sqrt{\dfrac{1}{a^2}}=\dfrac{2}{a}\left(3\right)\)

Dấu "=" xảy ra ...

Từ (1), (2), (3) ta có:

\(\dfrac{a}{bc}+\dfrac{c}{ba}+\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}+\dfrac{b}{ac}\ge\dfrac{2}{a}+\dfrac{2}{b}+\dfrac{2}{c}\\ \Rightarrow2\left(\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\\ \Rightarrow\dfrac{a}{bc}+\dfrac{b}{ac}+\dfrac{c}{ba}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)

Dấu "=" xảy ra ...

Vậy ...

22 tháng 1 2022

a, b, c có phải là số dương không bạn, nếu không thì làm sao dùng BĐT Cô-si được

AH
Akai Haruma
Giáo viên
23 tháng 1 2022

Lời giải:

Bổ sung điều kiện $a,b$ là các số dương. Áp dụng BĐT Cô-si ta có:

$a+b\geq 2\sqrt{ab}$

$\frac{1}{a}+\frac{1}{b}\geq 2\sqrt{\frac{1}{ab}}$

$\Rightarrow (a+b)(\frac{1}{a}+\frac{1}{b})\geq 2\sqrt{ab}.2\sqrt{\frac{1}{ab}}=4$

Ta có đpcm 

Dấu "=" xảy ra khi $a=b$

30 tháng 12 2022

1: \(\Leftrightarrow a\sqrt{a}+b\sqrt{b}>=\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\)

=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b-\sqrt{ab}\right)>=0\)

=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)^2>=0\)(luôn đúng)

23 tháng 9 2017

Hay 1 cách khác :AM-GM

\(\dfrac{b}{a^2}+\dfrac{c}{a^2}+\dfrac{1}{b}+\dfrac{1}{c}\ge4\sqrt[4]{\dfrac{1}{a^4}}=\dfrac{4}{a}\)

Tương tự là ta có ngay đpcm

23 tháng 9 2017

Một cách đơn giản nhất tương đương ( hay còn gọi là SOS)

\(BĐT\Leftrightarrow\sum\dfrac{b+c-2a}{a^2}\ge0\)

\(\Leftrightarrow\sum\left(\dfrac{b-a}{a^2}+\dfrac{c-a}{a^2}\right)\ge0\)

Nhóm lại: \(\Leftrightarrow\sum\left(\dfrac{a-b}{b^2}+\dfrac{b-a}{a^2}\right)\ge0\)

\(\Leftrightarrow\sum\left(a-b\right)^2.\left(\dfrac{a+b}{a^2b^2}\right)\ge0\)(đúng)

Vậy BĐT được chứng minh.

Dấu = xảy ra khi a=b=c

15 tháng 12 2017

Áp dụng BĐT Cauchy dạng engel ta có:

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\frac{(a+b+c)^2}{a+b+c}=a+b+c(đpcm) \)

18 tháng 12 2017

theo bđt cauchy ta có

\(\left\{{}\begin{matrix}\dfrac{a^2}{b}+b\ge2a\\\dfrac{b^2}{c}+c\ge2b\\\dfrac{c^2}{a}+a\ge2c\end{matrix}\right.\)

\(\Leftrightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}+a+b+c\ge2a+2b+2c\)

\(\Leftrightarrow\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge a+b+c\)

\(\Rightarrow dpcm\)

AH
Akai Haruma
Giáo viên
27 tháng 2 2018

Lời giải:

Tổng trên gồm \([2n-(n+1)]:1+1=n\)\([2n-(n+1)]:1+1=n\)
số hạng

Mỗi số hạng đứng trước \(\frac{1}{2n}\) đều lớn hơn hoặc bằng nó do \(n+1, n+2,....,2n-1\leq 2n\forall n\in\mathbb{N}^*\) thì \(\frac{1}{n+1}, \frac{1}{n+2},..., \frac{1}{2n-1}\geq \frac{1}{2n}\)

Suy ra:

\(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{2n}\geq \underbrace{\frac{1}{2n}+\frac{1}{2n}+...+\frac{1}{2n}}_{ \text{n lần}}=\frac{n}{2n}=\frac{1}{2}\) (đpcm)

Dấu bằng xảy ra khi \(n=1\)

30 tháng 12 2022

3: =>a^3+b^3+c^3>=3abc

=>(a+b)^3+c^3-3ab(a+b)-3abc>=0

=>(a+b+c)(a^2+b^2+c^2-ab-bc-ac)>=0

=>a^2+b^2+c^2-ab-bc-ac>=0

=>2a^2+2b^2+2c^2-2ab-2bc-2ac>=0

=>(a-b)^2+(a-c)^2+(b-c)^2>=0(luôn đúng)

20 tháng 4 2017

Ta có: \(a^2+\dfrac{1}{4}\ge a\)

Tương tự: \(\left\{{}\begin{matrix}b^2+\dfrac{1}{4}\ge b\\c^2+\dfrac{1}{4}\ge c\end{matrix}\right.\)

Cộng 3 cái vế theo vế ta được ĐPCM

AH
Akai Haruma
Giáo viên
4 tháng 4 2018

Lời giải:

Vì \(a+b+c=6\) nên BĐT cần chứng minh tương đương với:

\(\frac{ab}{2b+c+a+b+c}+\frac{bc}{2c+a+a+b+c}+\frac{ca}{2a+b+a+b+c}\leq 1(*)\)

Thật vậy, áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{ab}{2b+c+a+b+c}=\frac{ab}{(b+c)+(c+a)+2b}\leq \frac{ab}{9}\left(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2b}\right)\)

Hoàn toàn tương tự:

\(\frac{bc}{2c+a+a+b+c}\leq \frac{bc}{9}\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{2c}\right)\)

\(\frac{ca}{2a+b+a+b+c}\leq \frac{ca}{9}\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{2a}\right)\)

Cộng các BĐT vừa thu được lại ta có:

\(\text{VT}\leq \frac{1}{9}\left(\frac{ab+ac}{b+c}+\frac{ab+bc}{a+c}+\frac{bc+ca}{a+b}+\frac{a+b+c}{2}\right)\)

\(\Leftrightarrow \text{VT}\leq \frac{1}{9}\left(a+b+c+\frac{a+b+c}{2}\right)=\frac{1}{9}\left(6+\frac{6}{2}\right)=1\)

BĐT \((*)\) hoàn tất, ta có đpcm.

Dấu bằng xảy ra khi \(a=b=c=2\)

AH
Akai Haruma
Giáo viên
28 tháng 5 2019

Lời giải:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\text{VT}=\frac{ab}{6+2b+c}+\frac{bc}{6+2c+a}+\frac{ca}{6+2a+b}=\frac{ab}{a+b+c+2b+c}+\frac{bc}{a+b+c+2c+a}+\frac{ca}{a+b+c+2a+b}\)

\(=\frac{ab}{2b+(a+c)+(b+c)}+\frac{bc}{2c+(a+b)+(a+c)}+\frac{ca}{2a+(b+a)+(b+c)}\)

\(\leq \frac{ab}{9}\left(\frac{1}{2b}+\frac{1}{a+c}+\frac{1}{b+c}\right)+\frac{bc}{9}\left(\frac{1}{2c}+\frac{1}{a+b}+\frac{1}{a+c}\right)+\frac{ca}{9}\left(\frac{1}{2a}+\frac{1}{b+a}+\frac{1}{b+c}\right)\)

\(\text{VT}\leq \frac{a+b+c}{18}+\frac{ab+bc}{9(a+c)}+\frac{ab+ac}{9(b+c)}+\frac{bc+ac}{9(a+b)}\)

\(\text{VT}\leq \frac{(a+b+c)}{6}=\frac{6}{6}=1\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=2$