Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi UCLN(3k+2,5k+3) là d (d thuộc N*)
3k+2 chia hết cho d => 15k+10 chia hết cho d
5k+3 chia hết cho d => 15k+9 chia hết cho d
=> 15k+10-15k-9 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N*
=> d=1
=> 3k+2 và 5k+3 nguyên tố cùng nhau
Ta có: k = 0 ⇒ 5k = 0: không phải là số nguyên tố cũng không phải là hợp số
k = 1 ⇒ 5k = 5: là số nguyên tố
k ≥ 2 ⇒ 5k là hợp số (vì 5k có các ước 1, 5 và 5k)
Vậy k =1 thì 5k là số nguyên tố.
Dạng tổng quát của các cố tự nhiên chia hết cho 3 là:
A. 3k (k ∈ N) B. 5k + 3 (k ∈ N) C. 3k + 1 (k ∈ N) D. 3k + 2 (k ∈ N)
Dạng tổng quá của các số tự nhiên chia 5 dư 2 là:
A. 5k (k ∈ N) B. 5k + 2 (k ∈ N) C. 2k + 5 (k ∈ N) D. 5k + 4 (k ∈ N)