Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do m, n cùng dấu, m, n khác 0 nên m, n cùng âm hoặc cùng dương, mà nếu m, n cùng âm thì \(\frac{1}{2m}+\frac{1}{n}< 0< \frac{1}{3}\)
trái với gt \(\Rightarrow\) m, n cùng dương
\(\frac{1}{3}=\frac{1}{2m}+\frac{1}{n}\ge2\sqrt{\frac{1}{2mn}}\)\(\Leftrightarrow\)\(\frac{1}{2mn}\le\frac{1}{36}\)\(\Leftrightarrow\)\(mn\ge18\)\(\Rightarrow\)\(B\ge18\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}\frac{1}{2m}=\frac{1}{n}\\\frac{1}{2m}+\frac{1}{n}=\frac{1}{3}\end{cases}\Leftrightarrow\hept{\begin{cases}m=3\\n=6\end{cases}}}\)
a)\(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}.\frac{1}{n+1}.\left(\frac{1}{n}-\frac{1}{n+2}\right)\)=\(\frac{1}{2}.\frac{1}{n\left(n+1\right)}-\frac{1}{2}.\frac{1}{\left(n+1\right)\left(n+2\right)}\)= \(\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+1}\right)-\frac{1}{2}\left(\frac{1}{n+1}-\frac{1}{n+2}\right)\)
=> a = \(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{2}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{3}\right)\)+\(\frac{1}{2}\left(\frac{1}{2}-\frac{1}{3}\right)-\frac{1}{2}\left(\frac{1}{3}-\frac{1}{4}\right)\)+....+\(\frac{1}{2}\left(\frac{1}{2018}-\frac{1}{2019}\right)-\frac{1}{2}\left(\frac{1}{2019}-\frac{1}{2020}\right)\)=\(\frac{1}{2}\left(1-\frac{1}{2}\right)-\frac{1}{2}\left(\frac{1}{2019}-\frac{1}{2020}\right)\)=\(\frac{1}{4}\left(1-\frac{1}{2019.1010}\right)\)=\(\frac{2019.1010-1}{2.2019.2020}\)
b) tương tự \(\frac{1}{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}=\left(\frac{1}{n}-\frac{1}{n+1}\right)\left(\frac{1}{n+2}-\frac{1}{n+3}\right)\)=\(\frac{1}{2}\left(\frac{1}{n}-\frac{1}{n+2}\right)-\left(\frac{1}{n+1}-\frac{1}{n+2}\right)\)-\(\frac{1}{3}\left(\frac{1}{n}-\frac{1}{n+3}\right)+\frac{1}{2}\left(\frac{1}{n+1}-\frac{1}{n+3}\right)\)=\(\frac{1}{6}\left(\frac{1}{n}-\frac{1}{n+1}\right)-\frac{1}{3}\left(\frac{1}{n+1}-\frac{1}{n+2}\right)\)+\(\frac{1}{6}\left(\frac{1}{n+2}-\frac{1}{n+3}\right)\)= M-P+N
Với n từ 1 đến 2017 thì
M= \(\frac{1}{6}\left(\frac{1}{1}-\frac{1}{2}\right)+\frac{1}{6}\left(\frac{1}{2}-\frac{1}{3}\right)+...\)+\(\frac{1}{6}\left(\frac{1}{2017}-\frac{1}{2018}\right)\)=\(\frac{1}{6}\left(1-\frac{1}{2018}\right)=\frac{2017}{6.2018}\)
N= \(\frac{1}{6}\left(\frac{1}{3}-\frac{1}{4}\right)+\frac{1}{6}\left(\frac{1}{4}-\frac{1}{5}\right)+...+\)\(\frac{1}{6}\left(\frac{1}{2019}-\frac{1}{2020}\right)=\)\(\frac{1}{6}\left(\frac{1}{3}-\frac{1}{2020}\right)=\frac{2017}{6.3.2020}\)
P= \(\frac{1}{3}\left(\frac{1}{2}-\frac{1}{3}\right)+\frac{1}{3}\left(\frac{1}{3}-\frac{1}{4}\right)+...+\)\(\frac{1}{3}\left(\frac{1}{2018}-\frac{1}{2019}\right)\)= \(\frac{1}{3}\left(\frac{1}{2}-\frac{1}{2019}\right)=\frac{2017}{3.2.2019}\)
M+N-P = \(\frac{2017}{6}\left(\frac{1}{2018}+\frac{1}{3.2020}-\frac{1}{2019}\right)\)=\(\frac{2017}{6}.\left(\frac{1}{2018.2019}+\frac{1}{3.2020}\right)\)
= \(\frac{2017\left(1010+1009.673\right)}{3.2018.2019.2020}\)
gọi vận tốc của 2 người lll : x, y(km/h) ĐK: x,y>0
trường hợp 1: có vận tốc, quãng đường => thời gian của mỗi người sẽ được tính như sau
thời gian người thứ nhất : 2/x (h) [thời gian=quãng đường: vận tốc]
thời gian người thứ hai : 3,6-2/y (h)
ta có phương trình : 2/x=1,6/y (h) (1)
trường hợp 2 : người đi chậm hơn xuất phát trước người kia 6 phút thì họ sẽ gặp nhau ở chính giữa quãng đường tức là thơi gian đi của 2 người như nhau hay bằng nhau
thời gian người thứ nhất đi sẽ đc tính 3,6:2/x (h)
thời gian người thứ hai đi sẽ đc tính 3,6:2/y (h)
vì là 1 người đi trc người kia 6' thì học gặp nhau nên ta có phương trình 1,8/y - 1,8/x = 1/10 (đổi 6'=1/10 giờ) (2)
từ (1) (2) ta có hpt {......
bạn giải hpt ra rồi xem thõa mãn đk k rồi kết luận...:)))
Dòng một chiều DC là dòng điện có biên độ không thay đổi cực tính theo thời gian. Hay nói cách khác: đồ thị dòng điện luôn nằm 1 phía so với trục thời gian.
Dòng xoay chiều AC là dòng điện có cường độ biến thiên điều hòa theo thời gian theo hàm sin hoặc cos
Độ lớn dòng điện
Từ trường
Là dạng vật chất tồn tại xung quanh hạt mang điện chuyển động (dòng điện) hay các nam châm. Do đó nó sẽ tùy thuộc vào độ lớn và chiều của dòng điện.
Đặc trưng cản trở dòng