Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(A=\frac{(2^3+1)(3^3+1)(4^3+1)...(100^3+1)}{(2^3-1)(3^3-1).....(100^3-1)}\)
\(=\frac{(2+1)(2^2-2+1)(3+1)(3^2-3+1).....(100+1)(100^2-100+1)}{(2-1)(2^2+2+1)(3-1)(3^2+3+1)...(100-1)(100^2+100+1)}\)
\(=\frac{3.4...101(2^2-2+1)(3^2-3+1)...(100^2-100+1)}{1.2.3..99(2^2+2+1)(3^2+3+1)...(100^2+100+1)}\)
\(=\frac{100.101}{2}.\frac{(2^2-2+1)(3^2-3+1)....(100^2-100+1)}{(2^2+2+1)(3^2+3+1)...(100^2+100+1)}\)
Xét: \(a^2+a+1=(a+1)^2-a=(a+1)^2-(a+1)+1\)
Do đó:
\(\left\{\begin{matrix} 2^2+2+1=3^2-3+1\\ 3^2+3+1=4^2-4+1\\ ....\\ 99^2+99+1=100^2-100+1\\ \end{matrix}\right.\)
\(\Rightarrow A=\frac{100.101}{2}.\frac{2^2-2+1}{100^2+100+1}=5050.\frac{3}{10101}\)
\(A< 5050.\frac{3}{10100}=\frac{5050}{10100}.3=\frac{3}{2}\)
Vậy \(A< \frac{3}{2}\) hay \(A< B\)
3/
a/ \(A=\left(x-y\right)^2+\left(x+y\right)^2.\)
\(A=\left(x^2-2xy+y^2\right)+\left(x^2+2xy+y^2\right)\)
\(A=x^2-2xy+y^2+x^2+2xy+y^2\)
\(A=2x^2+2y^2\)
b/ \(B=\left(2a+b\right)^2-\left(2a-b\right)^2\)
\(B=\left(4a^2+4ab+b^2\right)-\left(4a^2-4ab+b^2\right)\)
\(B=4a^2+4ab+b^2-4a^2+4ab-b^2\)
\(B=8ab\)
c/ \(C=\left(x+y\right)^2-\left(x-y\right)^2\)
\(C=\left(x^2+2xy+y^2\right)-\left(x^2-2xy+y^2\right)\)
\(C=x^2+2xy+y^2-x^2+2xy-y^2\)
\(C=4xy\)
d/ \(D=\left(2x-1\right)^2-2\left(2x-3\right)^2+4\)
\(D=\left(4x^2-4x+1\right)-2\left(4x^2-12x+9\right)+4\)
\(D=4x^2-4x+1-8x^2+24x-18+4\)
\(D=-4x^2+20x-13\)
\(a,\frac{1}{2}x+\frac{1}{2}+\frac{1}{4}x+\frac{3}{4}=3-\frac{1}{3}x-\frac{2}{3}\)
\(\frac{13}{12}x=\frac{13}{12}\Rightarrow x=1\)
\(Taco\):
\(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right).......................\left(1-\frac{1}{1+2+3+.............+2018}\right)\)
\(A=\left(\frac{1+2}{1+2}-\frac{1}{1+2}\right).............\left(\frac{1+2+3+......+2018}{1+2+3+.......+2018}-\frac{1}{1+2+3+......+2018}\right)\)
\(A=\left(\frac{2}{1+2}\right)...........\left(\frac{2+3+.......+2018}{1+2+3+......+2018}\right)\)
\(\Rightarrow A+2017.\left(\frac{1}{3}\right).....\frac{2+3+.....+2018}{1+2+3+...+2018}=1.1.1......1=1\)
\(.................................\)