K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) ĐKXĐ : \(x\ge-3\)\(pt\Leftrightarrow x^2-2x+1=x+3-4\sqrt{x+3}+4\Leftrightarrow\left(x-1\right)^2=\left(\sqrt{x+3}-2\right)^2\Leftrightarrow x-1=\sqrt{x+3}-2\Leftrightarrow x+1=\sqrt{x+3}\Leftrightarrow\left(x+1\right)^2=x+3\left(x\ge-1\right)\Leftrightarrow x^2+2x+1=x+3\Leftrightarrow x^2+x-2=0\Leftrightarrow\left[{}\begin{matrix}x=1\left(tmdk\right)\\x=-2\left(kotm\right)\end{matrix}\right.\)

19 tháng 6 2021

cảm ơn bạn

 

22 tháng 11 2015

ak,,,,,,,còn mỗi bước GPT nghiệm nguyên nữa mà mãi ko ra

24 tháng 12 2015

PT <=> \(\sqrt{4x^2-14x+16}-\text{ }\sqrt{x^2-4x+5}=x-1\)

Đẽ thấy x = 1 không là n* của pt . Chia cả hai vế cho x - 1 

pt  <=> \(\sqrt{\frac{4x^2-14x+16}{x^2-2x+1}}-\sqrt{\frac{x^2-4x+5}{x^2-2x+1}}=1\)

    <=> \(\sqrt{\frac{4\left(x^2-2x+1\right)+12-6x}{x^2-2x+1}}-\sqrt{\frac{x^2-2x+1+4-2x}{x^2-2x+1}}=1\)

     <=> \(\sqrt{4+\frac{12-6x}{x^2-2x+1}}-\sqrt{1+\frac{4-2x}{x^2-2x+1}}=1\)

Đặt \(\sqrt{4+\frac{12-6x}{x^2-2x+1}}=a;\sqrt{1+\frac{4-2x}{x^2-2x+1}}=b\) (a;b > 0 ) ta có hpt 

\(\int^{a^2-3b^2=4+\frac{12-6x}{x^2-2x+1}-3-\frac{12-6x}{x^2-2x+1}=1}_{a-b=1}\)

Tự giải 

 

AH
Akai Haruma
Giáo viên
17 tháng 9 2017

Lời giải:

a) \(3x^2+4x+10=2\sqrt{14x^2-7}=2\sqrt{7(2x^2-1)}\)

Áp dụng BĐT AM-GM:

\(3x^2+4x+10\leq 7+(2x^2-1)\)

\(\Leftrightarrow x^2+4x+4\leq 0\)

\(\Leftrightarrow (x+2)^2\leq 0\)

Mà \((x+2)^2\geq 0\forall x\in\mathbb{R}\Rightarrow (x+2)^2=0\)

\(\Leftrightarrow x=-2\) (thử lại thấy thỏa mãn)

b) Có:

\(\sqrt{4x^2+5x+1}+3=2\sqrt{x^2-x+1}+9x\)

\(\Leftrightarrow \sqrt{4x^2+5x+1}-\sqrt{4x^2-4x+4}=9x-3\)

\(\Leftrightarrow \frac{9x-3}{\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}}-(9x-3)=0\)

\(\Leftrightarrow (9x-3)\left(\frac{1}{\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}9x-3=0\Leftrightarrow x=\dfrac{1}{3}\\\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}=1\left(2\right)\end{matrix}\right.\)

Xét (2):

Ta thấy:

\(\sqrt{4x^2+5x+1}+\sqrt{4x^2-4x+4}\geq \sqrt{4x^2-4x+4}=\sqrt{(2x-1)^2+3}\geq \sqrt{3}>1\)

Do đó \((2)\) vô lý

Vậy PT có nghiệm \(x=\frac{1}{3}\)

17 tháng 9 2017

giỏi quá ><

31 tháng 8 2017

ai giải hộ với nhanh cái mk sắp đi học òi

2 tháng 9 2017

thui chữa òi ko cần làm đâu

a: ĐKXĐ: x>=5

\(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\cdot\sqrt{9x-45}=4\)

=>\(2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)

=>\(2\sqrt{x-5}=4\)

=>\(\sqrt{x-5}=2\)

=>x-5=4

=>x=9(nhận)

b: ĐKXĐ: x>=1/2

\(\sqrt{2x-1}-\sqrt{8x-4}+5=0\)

=>\(\sqrt{2x-1}-2\sqrt{2x-1}+5=0\)

=>\(5-\sqrt{2x-1}=0\)

=>\(\sqrt{2x-1}=5\)

=>2x-1=25

=>2x=26

=>x=13(nhận)

c: \(\sqrt{x^2-10x+25}=2\)

=>\(\sqrt{\left(x-5\right)^2}=2\)

=>\(\left|x-5\right|=2\)

=>\(\left[{}\begin{matrix}x-5=2\\x-5=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\)

d: \(\sqrt{x^2-14x+49}-5=0\)

=>\(\sqrt{x^2-2\cdot x\cdot7+7^2}=5\)

=>\(\sqrt{\left(x-7\right)^2}=5\)

=>|x-7|=5

=>\(\left[{}\begin{matrix}x-7=5\\x-7=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=12\\x=2\end{matrix}\right.\)

1 tháng 11 2023

\(a,\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\left(đkxđ:x\ge5\right)\\ \Leftrightarrow\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\\ \Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\\ \Leftrightarrow2\sqrt{x-5}=4\\ \Leftrightarrow\sqrt{x-5}=2\\ \Leftrightarrow x-5=4\\ \Leftrightarrow x=9\left(tm\right)\)

\(b,\sqrt{2x-1}-\sqrt{8x-4}+5=0\left(đkxđ:x\ge\dfrac{1}{2}\right)\\ \Leftrightarrow\sqrt{2x-1}-\sqrt{4\left(2x-1\right)}=-5\\ \Leftrightarrow\sqrt{2x-1}-2\sqrt{2x-1}=-5\\ \Leftrightarrow-\sqrt{2x-1}=-5\\ \Leftrightarrow\sqrt{2x-1}=5\\ \Leftrightarrow2x-1=25\\ \Leftrightarrow2x=26\\ \Leftrightarrow x=13\left(tm\right)\)

\(c,\sqrt{x^2-10x+25}=2\\ \Leftrightarrow\sqrt{\left(x-5\right)^2}=2\\ \Leftrightarrow\left|x-5\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x-5=2\\x-5=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\)

\(d,\sqrt{x^2-14x+49}-5=0\\ \Leftrightarrow\sqrt{\left(x-7\right)^2}=5\\ \Leftrightarrow\left|x-7\right|=5\\ \Leftrightarrow\left[{}\begin{matrix}x-7=5\\x-7=-5\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=12\\x=2\end{matrix}\right.\)