\(\sqrt{x^2+x-1}+\sqrt{x-x^2+1}=x^2-x+2\)

giải kiểu bất đẳng thức. thank you !

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2021

ĐKXĐ:...

\(VT\le\dfrac{\left(x^2+x-1\right)+1}{2}+\dfrac{x-x^2+1+1}{2}=x+1\)

\(=2x-x+1\le x^2+1-x+1=VP\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x^2+x-1=1\\x-x^2+1=1\end{matrix}\right.\Leftrightarrow x=1\)

NV
24 tháng 2 2020

a/ \(-1\le x\le1\)

\(\Leftrightarrow\frac{2x}{\sqrt{1+x}+\sqrt{1-x}}-x\ge0\)

\(\Leftrightarrow x\left(\frac{2}{\sqrt{1+x}+\sqrt{1-x}}-1\right)\ge0\)

Do \(0< \sqrt{1+x}+\sqrt{1-x}\le\sqrt{2\left(1+x+1-x\right)}=2\)

\(\Rightarrow\frac{2}{\sqrt{1+x}+\sqrt{1-x}}\ge1\Rightarrow\frac{2}{\sqrt{1+x}+\sqrt{1-x}}-1\ge0\)

\(\Rightarrow x\ge0\)

Vậy nghiệm của BPT là \(0\le x\le1\)

b/ \(\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{\left(x-1\right)\left(x-3\right)}\ge2\sqrt{\left(x-1\right)\left(x-4\right)}\)

- Với \(x=1\) thỏa mãn

- Với \(x\ge4\Leftrightarrow\sqrt{x-2}+\sqrt{x-3}\ge2\sqrt{x-4}\)

\(\Leftrightarrow\sqrt{x-2}-\sqrt{x-4}+\sqrt{x-3}-\sqrt{x-4}\ge0\)

\(\Leftrightarrow\frac{2}{\sqrt{x-2}+\sqrt{x-4}}+\frac{1}{\sqrt{x-3}+\sqrt{x-4}}\ge0\) (luôn đúng)

- Với \(x< 1\Rightarrow\sqrt{2-x}+\sqrt{3-x}\ge2\sqrt{4-x}\)

Tương tự bên trên ta có BPT luôn sai

Vậy nghiệm của BPT đã cho là \(\left[{}\begin{matrix}x=1\\x\ge4\end{matrix}\right.\)

3 tháng 3 2019

1.ĐK: \(x\ge\dfrac{1}{4}\)

bpt\(\Leftrightarrow5x+1+4x-1-2\sqrt{20x^2-x-1}< 9x\)

\(\Leftrightarrow2\sqrt{20x^2-x-1}>0\)

\(\Leftrightarrow20x^2-x-1>0\)

\(\Leftrightarrow\left[{}\begin{matrix}x< \dfrac{-1}{5}\\x>\dfrac{1}{4}\end{matrix}\right.\)

2.ĐK: \(-2\le x\le\dfrac{5}{2}\)

bpt\(\Leftrightarrow x+2+3-x-2\sqrt{-x^2+x+6}< 5-2x\)

\(\Leftrightarrow2x< 2\sqrt{-x^2+x+6}\)

\(\Leftrightarrow x^2< -x^2+x+6\)

\(\Leftrightarrow-2x^2+x+6>0\)

\(\Leftrightarrow\dfrac{-3}{2}< x< 2\)

3. ĐK: \(\left\{{}\begin{matrix}12+x-x^2\ge0\\x\ne11\\x\ne\dfrac{9}{2}\end{matrix}\right.\)

.bpt\(\Leftrightarrow\sqrt{12+x-x^2}\left(\dfrac{1}{x-11}-\dfrac{1}{2x-9}\right)\ge0\)

\(\Leftrightarrow\sqrt{-x^2+x+12}.\dfrac{x+2}{\left(x-11\right)\left(2x-9\right)}\ge0\)

\(\Rightarrow\dfrac{x+2}{\left(x-11\right)\left(2x-9\right)}\ge0\)

\(\Leftrightarrow\dfrac{x+2}{2x^2-31x+99}\ge0\)

*Xét TH1: \(\left\{{}\begin{matrix}x+2\ge0\\2x^2-31x+99>0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\\left[{}\begin{matrix}x< \dfrac{9}{2}\\x>11\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}-2\le x< \dfrac{9}{2}\\x>11\end{matrix}\right.\)

*Xét TH2: \(\left\{{}\begin{matrix}x+2\le0\\2x^2-31x+99< 0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\le-2\\\dfrac{9}{2}< x< 11\end{matrix}\right.\)\(\Rightarrow\dfrac{9}{2}< x< 11\)

15 tháng 2 2017

\(\frac{2x-5}{!x-3!}+1>0\Leftrightarrow\frac{2x-5+!x-3!}{!x-3}>0\)

do !x-3!>0 mọi x khác 3=> Bất phương trình tương đương

\(2x-5+!x-3!>0\Leftrightarrow!x-3!>5-2x\)

TH(1) x<3 <=>3-x>5-2x=> x>2

Kết luận(1) \(2< x< 3\)

TH(2) \(x\ge3\Leftrightarrow x-3>5-2x\Rightarrow3x>8\Rightarrow x>\frac{8}{3}\)

Kết luận(2) \(x\ge3\)

(1)và(2) nghiệm của Bpt là: x>2

12 tháng 2 2020

a) ĐK

\(\left\{{}\begin{matrix}x-3\ge0\\2-x\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge3\\x\le2\end{matrix}\right.\) (qvl)

b)

\(\sqrt{x^2+5}>\sqrt{x^2+3}\)

\(\Rightarrow\sqrt{3+x^2}-\sqrt{5+x^2}< 0\)

Suy ra bpt trên đề bài sai

c)

\(\Leftrightarrow2x^2-4x+2\le0\Leftrightarrow2\left(x^2-2x+1\right)\le0\Leftrightarrow2\left(x+1\right)^2\le0\) (vô lí)

d) \(\Leftrightarrow2x^2-2x+4\le0\Leftrightarrow2\left(x^2-x+\frac{1}{4}\right)+\frac{7}{2}\le0\) ( vô lí )

NV
8 tháng 5 2020

a/ ĐKXĐ: \(\left[{}\begin{matrix}x\le3-\sqrt{7}\\x\ge3+\sqrt{7}\end{matrix}\right.\)

- Với \(x< -1\Rightarrow\left\{{}\begin{matrix}VT\ge0\\VP< 0\end{matrix}\right.\) BPT luôn đúng

- Với \(x\ge-1\) bình phương 2 vế:

\(x^2-6x+2>x^2+2x+1\)

\(\Leftrightarrow8x< 1\Rightarrow x< \frac{1}{8}\)

Vậy nghiệm của BPT là \(x< \frac{1}{8}\)

b/ ĐKXĐ: \(-\frac{1}{2}\le x\le\frac{1}{4}\)

\(\Leftrightarrow1-4x< 2x+1\Leftrightarrow x>0\)

Nghiệm của BPT là: \(0< x\le\frac{1}{4}\)

c/ ĐKXĐ \(5\le x\le9\)

\(\Leftrightarrow\sqrt{x-5}>1+\sqrt{9-x}\)

\(\Leftrightarrow x-5>10-x+2\sqrt{9-x}\)

\(\Leftrightarrow2x-15>2\sqrt{9-x}\)

- Với \(x< \frac{15}{2}\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP\ge0\end{matrix}\right.\) BPT vô nghiêm

- Với \(x\ge\frac{15}{2}\)

\(\Leftrightarrow\left(2x-15\right)^2>4\left(9-x\right)\)

\(\Leftrightarrow4x^2-56x+189>0\)

\(\Rightarrow\frac{14+\sqrt{7}}{2}< x\le9\)