\(\sqrt{x^2+7x+10}=3\sqrt{x+2}+2\sqrt{x+5}-6\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2019

đa phần mình sử dụng phương pháp liên hợp nha bạn

\(\sqrt{a}-\sqrt{b}=\dfrac{a-b}{\sqrt{a}+\sqrt{b}}\)

b. điều kiện \(\dfrac{1}{4}\le x\le\dfrac{3}{8}\), pt:

\(\Leftrightarrow\sqrt{3-8x}-\sqrt{4x-1}=6x-2\\ \Leftrightarrow\dfrac{3-8x-4x+1}{\sqrt{3-8x}+\sqrt{4x-1}}=2\left(3x-1\right)\\ \Leftrightarrow\dfrac{-4\left(3x-1\right)}{\sqrt{3-8x}+\sqrt{4x-1}}=2\left(3x-1\right)\\ \Leftrightarrow2\left(3x-1\right)+\dfrac{4\left(3x-1\right)}{\sqrt{3-8x}+\sqrt{4x-1}}=0\\ \Leftrightarrow2\left(3x-1\right)\left(1+\dfrac{2}{\sqrt{3-8x}+\sqrt{4x-1}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\left(n\right)\\1+\dfrac{2}{\sqrt{3-8x}+\sqrt{4x-1}}=0\left(vn\right)\end{matrix}\right.\)

d. điều kiện: \(x\le-4\cup x\ge0\), pt:

\(\Leftrightarrow1-\sqrt{x^2-3x+3}=\sqrt{2x^2+x+2}-\sqrt{x^2+4x}\\ \Leftrightarrow\dfrac{1-x^2+3x-3}{1+\sqrt{x^2-3x+3}}=\dfrac{2x^2+x+2-x^2-4x}{\sqrt{2x^2+x+2}+\sqrt{x^2+4x}}\\ \Leftrightarrow\dfrac{-\left(x-1\right)\left(x-2\right)}{1+\sqrt{x^2-3x+3}}=\dfrac{\left(x-1\right)\left(x-2\right)}{\sqrt{2x^2+x+2}+\sqrt{x^2+4x}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(n\right)\\x=1\left(n\right)\\\dfrac{-1}{1+\sqrt{x^2-3x+3}}=\dfrac{1}{\sqrt{2x^2+x+2}+\sqrt{x^2+4x}}\left(vn\right)\end{matrix}\right.\)

e. điều kiện:x thuộc R

\(\Leftrightarrow\sqrt{x^2+15}-4=3x-3+\sqrt{x^2+8}-3\\ \Leftrightarrow\dfrac{x^2+15-16}{\sqrt{x^2+15}+4}=3\left(x-1\right)+\dfrac{x^2+8-9}{\sqrt{x^2+8}+3}\\ \Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+15}+4}-3\left(x-1\right)-\dfrac{\left(x-1\right)\left(x+1\right)}{\sqrt{x^2+8}+3}=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\dfrac{\left(x+1\right)}{\sqrt{x^2+15}+4}-3-\dfrac{\left(x+1\right)}{\sqrt{x^2+8}+3}=0\left(1\right)\end{matrix}\right.\)

(1) mình không biết có vô nghiệm không nữa và cũng thua luôn

f. điều kiện: \(x\ge-2\)

bài này giải cách hơi khác một chút

đặt \(a=\sqrt{x+5}\left(\ge0\right)\\ b=\sqrt{x+2}\left(\ge0\right)\)

pt:

\(\Leftrightarrow\left(\sqrt{x+5}-\sqrt{x+2}\right)\left[\left(1+\sqrt{\left(x+5\right)\left(x+2\right)}\right)\right]\\ \Rightarrow\left(a-b\right)\left(1+ab\right)=3\left(1\right)\)

\(a^2-b^2=x+5-x-2=3\\ \Rightarrow\left(a-b\right)\left(a+b\right)=3\left(2\right)\)

=> (1) = (2)

\(\Leftrightarrow\left(a-b\right)\left(1+ab\right)=\left(a-b\right)\left(a+b\right)\\ \Leftrightarrow\left(a-b\right)\left(1+ab-a-b\right)=0\\ \Leftrightarrow\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\)

TH1: a=b \(\Leftrightarrow\sqrt{x+5}=\sqrt{x+2}\Leftrightarrow x+5=x+2\left(vn\right)\)

TH2: a=1\(\Leftrightarrow\sqrt{x+5}=1\Leftrightarrow x=-4\left(l\right)\)

TH3: b=1\(\Leftrightarrow\sqrt{x+2}=1\Leftrightarrow x=-1\left(n\right)\)

g. điều kiện: \(x\le-\sqrt{2}\cup x\ge\dfrac{7+\sqrt{37}}{2}\)

pt:

\(\dfrac{3x^2-7x+3-3x^2+5x+1}{\sqrt{3x^2-7x+2}+\sqrt{x^2-3x-4}}=\dfrac{x^2-2-x^2+3x-4}{\sqrt{3x^2-5x-1}+\sqrt{x^2-2}}\\ \Leftrightarrow\dfrac{-2\left(x-2\right)}{\sqrt{3x^2-7x+2}+\sqrt{x^2-3x-4}}=\dfrac{3\left(x-2\right)}{\sqrt{3x^2-5x-1}+\sqrt{x^2-2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\left(n\right)\\\dfrac{-2}{\sqrt{3x^2-7x+2}+\sqrt{x^2-3x-4}}=\dfrac{3}{\sqrt{3x^2-5x-1}+\sqrt{x^2-2}}\left(vn\right)\end{matrix}\right.\)h. điều kiện \(x\le-2-\sqrt{7}\cup x\ge-2+\sqrt{7}\)

\(\sqrt{2x^2+x-1}-\sqrt{x^2+4x-3}=\sqrt{2x^2+4x-3}-\sqrt{3x^2+x-1}\\ \Leftrightarrow\dfrac{2x^2+x-1-x^2-4x+3}{\sqrt{2x^2+x-1}+\sqrt{x^2+4x-3}}=\dfrac{2x^2+4x-3-3x^2-x+1}{\sqrt{2x^2+4x-3}+\sqrt{3x^2+x-1}}\\ \Leftrightarrow\dfrac{x^2-3x+2}{\sqrt{2x^2+x-1}+\sqrt{x^2+4x-3}}=\dfrac{-\left(x^2-3x+2\right)}{\sqrt{2x^2+4x-3}+\sqrt{3x^2+x-1}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-3x+2=0\Leftrightarrow x=1\left(n\right),x=2\left(n\right)\\\dfrac{1}{\sqrt{2x^2+x-1}+\sqrt{x^2+4x-3}}=\dfrac{-1}{\sqrt{2x^2+4x-3}+\sqrt{3x^2+x-1}}\left(vn\right)\end{matrix}\right.\)

(nhớ tích cho mình nha, mấy bài kia mình ko biết làm huhu)

10 tháng 2 2019

thank bn

13 tháng 8 2019

1.A sai đề ?

1.B : \(x^2+x+6+2x\sqrt{x+3}=4\left(x+\sqrt{x+3}\right)\)

\(\Leftrightarrow x^2+x+6+2x\sqrt{x+3}=4x+4\sqrt{x+3}\)

\(\Leftrightarrow x^2+x+6+2x\sqrt{x+3}-4x-4\sqrt{x+3}=0\)

\(\Leftrightarrow x^2-3x+6+2x\sqrt{x+3}-4\sqrt{x+3}=0\)

\(\Leftrightarrow x^2-3x+6+2\sqrt{x+3}\left(x-2\right)=0\)

\(\Leftrightarrow x+3+2\sqrt{x+3}\left(x-2\right)+\left(x-2\right)^2-1=0\)

\(\Leftrightarrow\left(\sqrt{x+3}+x-2\right)^2-1=0\)

\(\Leftrightarrow\left(\sqrt{x-3}+x-3\right)\left(\sqrt{x-3}+x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}+x-3=0\\\sqrt{x-3}+x-1=0\end{matrix}\right.\)

Đến đây dễ rồi

Đáp án : \(\left[{}\begin{matrix}x=3\\x=\varnothing\end{matrix}\right.\)

2.A đang nghĩ

2.B

Áp dụng bất đẳng thức Cô-si :

\(\frac{x}{\sqrt{4x-1}}+\frac{\sqrt{4x-1}}{x}\ge2\sqrt{\frac{x\left(\sqrt{4x-1}\right)}{\left(\sqrt{4x-1}x\right)}}=2\)

Dấu "=" xảy ra \(\Leftrightarrow\frac{x}{\sqrt{4x-1}}=\frac{\sqrt{4x-1}}{x}\)

\(\Leftrightarrow x^2=4x-1\)

\(\Leftrightarrow x^2-4x+1=0\)

\(\Leftrightarrow x=2\pm\sqrt{3}\)( thỏa )

Vậy....

13 tháng 8 2019

mấy bài này thuộc toán 9 nâng cao

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

8) ĐKXĐ: $-2\leq x\leq 1$

PT $\Leftrightarrow (2x+4)-4\sqrt{2x+4}+4+[(1-x)-2\sqrt{1-x}+1]=0$

$\Leftrightarrow (\sqrt{2x+4}-2)^2+(\sqrt{1-x}-1)^2=0$

Dễ thấy: $(\sqrt{2x+4}-2)^2; (\sqrt{1-x}-1)^2\geq 0$ với mọi $x\in [-2;1]$ nên để tổng của chúng bằng $0$ thì:

$(\sqrt{2x+4}-2)^2=(\sqrt{1-x}-1)^2=0$

$\Leftrightarrow \sqrt{2x+4}=2; \sqrt{1-x}-1=0$

$\Leftrightarrow x=0$ (thỏa mãn)

Vậy.....

AH
Akai Haruma
Giáo viên
16 tháng 7 2020

7)

ĐKXĐ: $x\geq -1$

PT $\Leftrightarrow x^2+[(x+1)-2\sqrt{x+1}+1]=0$

$\Leftrightarrow x^2+(\sqrt{x+1}-1)^2=0$

Ta thấy:

$x^2\geq 0; (\sqrt{x+1}-1)^2\geq 0$ với mọi $x\geq -1$

Do đó để tổng của chúng bằng $0$ thì $x^2=(\sqrt{x+1}-1)^2=0$

$\Leftrightarrow x=0$ (thỏa mãn)

Vậy.......

3 tháng 12 2017

a) \(\sqrt{1+x}-\sqrt{8-x}+\sqrt{\left(1+x\right)\left(8-x\right)}=3\)

đặt t \(=\sqrt{1+x}-\sqrt{8-x}\)

\(\Leftrightarrow t^2=1+x-2\sqrt{\left(1+x\right)\left(8-x\right)}+8-x\)

\(\Leftrightarrow\sqrt{\left(1+x\right)\left(8-x\right)}=\dfrac{9-t^2}{2}\)

pt \(\Rightarrow t+\dfrac{9-t^2}{2}=3\)

\(\Leftrightarrow t^2-2t-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{1+x}-\sqrt{8-x}=-1\\\sqrt{1+x}-\sqrt{8+x}=3\end{matrix}\right.\)

suy ra tìm đc x

3 tháng 12 2017

câu b đặt t =\(3x^2+5x+8\)

ta có pt \(\Leftrightarrow\sqrt{t}-\sqrt{t-7}=1\)

\(\Rightarrow t=16\)

\(\Leftrightarrow3x^2+5x+8=16\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{8}{3}\end{matrix}\right.\)

2 tháng 7 2017

mấy câu này chắc xài giá trị tuyệt đối

đăng ít thôi bn sợ quá :))

NV
16 tháng 2 2020

a/ ĐKXĐ: ...

\(\Leftrightarrow\left(x^2-6x\right)\left(\sqrt{17-x^2}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x=0\\\sqrt{17-x^2}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\left(x-6\right)=0\\x^2=16\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x=6\left(l\right)\\x=4\\x=-4\end{matrix}\right.\)

b/ĐKXĐ: \(x\ge-3\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+5x+4=0\\\sqrt{x+3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-4\left(l\right)\\x=-3\end{matrix}\right.\)

NV
16 tháng 2 2020

c/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ge1\\x\le1\end{matrix}\right.\) \(\Rightarrow x=1\)

Thay \(x=1\) vào pt thấy ko thỏa mãn

Vậy pt vô nghiệm

d/ ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-4x+3=0\\\sqrt{x-2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\left(l\right)\\x=2\end{matrix}\right.\)