Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{\left(x^2+2x+1\right)+4}=\sqrt{\left(x+1\right)^2+4}\supseteq\sqrt{4}=2\)
=> min M=2 => x=-1
Với các số thực không âm a; b ta luôn có BĐT sau:
\(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) (bình phương 2 vế được \(2\sqrt{ab}\ge0\) luôn đúng)
Áp dụng:
a.
\(A\ge\sqrt{x-4+5-x}=1\)
\(\Rightarrow A_{min}=1\) khi \(\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
\(A\le\sqrt{\left(1+1\right)\left(x-4+5-x\right)}=\sqrt{2}\) (Bunhiacopxki)
\(A_{max}=\sqrt{2}\) khi \(x-4=5-x\Leftrightarrow x=\dfrac{9}{2}\)
b.
\(B\ge\sqrt{3-2x+3x+4}=\sqrt{x+7}=\sqrt{\dfrac{1}{3}\left(3x+4\right)+\dfrac{17}{3}}\ge\sqrt{\dfrac{17}{3}}=\dfrac{\sqrt{51}}{3}\)
\(B_{min}=\dfrac{\sqrt{51}}{3}\) khi \(x=-\dfrac{4}{3}\)
\(B=\sqrt{3-2x}+\sqrt{\dfrac{3}{2}}.\sqrt{2x+\dfrac{8}{3}}\le\sqrt{\left(1+\dfrac{3}{2}\right)\left(3-2x+2x+\dfrac{8}{3}\right)}=\dfrac{\sqrt{510}}{6}\)
\(B_{max}=\dfrac{\sqrt{510}}{6}\) khi \(x=\dfrac{11}{30}\)
a)Ta có:A=\(\sqrt{x-4}+\sqrt{5-x}\)
=>A2=\(x-4+2\sqrt{\left(x-4\right)\left(5-x\right)}+5-x\)
=>A2= 1+\(2\sqrt{\left(x-4\right)\left(5-x\right)}\ge1\)
=>A\(\ge\)1
Dấu '=' xảy ra <=> x=4 hoặc x=5
Vậy,Min A=1 <=>x=4 hoặc x=5
Còn câu b tương tự nhé
\(x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
\(\Rightarrow P=\sqrt{x^2-2x+5}\ge\sqrt{4}=2\)
\(minP=2\Leftrightarrow x=1\)
\(E=\frac{\left(x^2-2x+1\right)-x+2}{\left(x-1\right)^2}=\frac{\left(x-1\right)^2-\left(x-1\right)+1}{\left(x-1\right)^2}=1-\frac{1}{x-1}+\frac{1}{\left(x-1\right)^2}\)
Đặt \(y=\frac{1}{x-1}\)
=> E = 1 - y + y2 = (y2 - 2. y . \(\frac{1}{2}\)+ \(\frac{1}{4}\)) + \(\frac{3}{4}\)= ( y - \(\frac{1}{2}\) )2 + \(\frac{3}{4}\) \(\ge\) 0 + \(\frac{3}{4}\) = \(\frac{3}{4}\)
=> Min E = \(\frac{3}{4}\) khi y - \(\frac{1}{2}\) = 0 <=> y = \(\frac{1}{2}\)
=> x - 1 = 2 <=> x = 3
\(\Leftrightarrow\)A=\(\left|x-2010\right|+\left|x-2011\right|\)=\(\left|x-2010\right|+\left|2011-x\right|\)\(\ge\)\(\left|x-2010+2011-x\right|\)=1
Dấu ''='' xảy ra khi và chỉ khi \(\hept{\begin{cases}x-2010\ge0\\2011-x\ge0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x\ge2010\\x\le2011\end{cases}}\)\(\Leftrightarrow\)\(2010\le x\le2011\)
Vậy Min A =1 \(\Leftrightarrow2010\le x\le2011\)
Bài làm:
Ta có: \(M=\sqrt{x^2+2x+5}=\sqrt{\left(x+1\right)^2+4}\)
Mà \(\left(x+1\right)^2+4\ge4\left(\forall x\right)\)
=> \(M\ge2\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x+1\right)^2=0\Rightarrow x=-1\)
Vậy \(M_{Min}=2\Leftrightarrow x=-1\)
\(M=\sqrt{x^2+2x+5}\)
\(\Leftrightarrow M=\sqrt{x^2+2x+1+4}\)
\(\Leftrightarrow M=\sqrt{\left(x+1\right)^2+4}\ge\sqrt{4}=2\)
Min M = 2
\(\Leftrightarrow x=-1\)
\(M=2x+\sqrt{5-x^2}\)
\(\Leftrightarrow M-2x=\sqrt{5-x^2}\)
\(\Leftrightarrow M^2-4Mx+4x^2=5-x^2\)
\(\Leftrightarrow5x^2-4Mx+M^2-5=0\)
Để PT theo nghiệm x có nghiệm thì
\(\Delta'=4M^2-5.\left(M^2-5\right)\ge0\)
\(\Leftrightarrow M^2\le25\)
\(\Leftrightarrow-5\le M\le5\)
a, Ta có : \(x=4\Rightarrow\sqrt{x}=2\)
\(\Rightarrow A=\frac{2+1}{2+2}=\frac{3}{4}\)
Vậy với x = 4 thì A = 3/4
b, \(B=\frac{3}{\sqrt{x}-1}-\frac{\sqrt{x}+5}{x-1}=\frac{3\left(\sqrt{x}+1\right)-\sqrt{x}-5}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{3\sqrt{x}+3-\sqrt{x}-5}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2}{\sqrt{x}+1}\)( đpcm )
\(\sqrt{x^2+2x+5}=\sqrt{\left(x+1\right)^2+4}\ge\sqrt{4}=2.\)với mọi x
GTNN \(\sqrt{x^2+2x+5}=2\)khi x = -1
\(\sqrt{x^2+2x+5}=\sqrt{\left(x+1\right)^2+4}\ge2\) với x=-1