Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mầy câu 1;3;;4;5 cách làm nhu nhau(nhân liên hop hoac bình phuong lên)
1.
\(DK:x\in\left[-4;5\right]\)
\(\Leftrightarrow\sqrt{x-5}+\left(\sqrt{x+4}-3\right)=0\)
\(\Leftrightarrow\sqrt{x-5}+\frac{x-5}{\sqrt{x+4}+3}=0\)
\(\Leftrightarrow\sqrt{x-5}\left(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}\right)=0\)
Vi \(1+\frac{\sqrt{x-5}}{\sqrt{x+4}+3}>0\)
\(\Rightarrow\sqrt{x-5}=0\)
\(x=5\left(n\right)\)
Vay nghiem cua PT la \(x=5\)
2.
\(DK:x\ge0\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x}-2\right)^2}+\sqrt{\left(\sqrt{x}-3\right)^2}=1\)
\(\Leftrightarrow|\sqrt{x}-2|+|\sqrt{x}-3|=1\)
Ta co:
\(|\sqrt{x}-2|+|\sqrt{x}-3|=|\sqrt{x}-2|+|3-\sqrt{x}|\ge|\sqrt{x}-2+3-\sqrt{x}|=1\)
Dau '=' xay ra khi \(\left(\sqrt{x}-2\right)\left(3-\sqrt{x}\right)\ge0\)
TH1:
\(\hept{\begin{cases}\sqrt{x}-2\ge0\\3-\sqrt{x}\ge0\end{cases}\Leftrightarrow4\le x\le9\left(n\right)}\)
TH2:(loai)
Vay nghiem cua PT la \(x\in\left[4;9\right]\)
1. \(x^4-x^2+3x+5=2\sqrt{x+1}\) ĐK: \(x\ge-1\)
\(\Leftrightarrow\left(x^4-x^2+2x+2\right)+\left(x+1-2\sqrt{x+1}+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x^2-2x+2\right)+\left(\sqrt{x}-1\right)^2=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2\left[\left(\sqrt{x}+1\right)^2\left(x^2-2x+2\right)+1\right]=0\)
Dễ thấy \(\left(\sqrt{x}+1\right)^2\left(x^2-2x+2\right)+1>0\)
Vậy x =1
3. ĐK: \(x\ge-2\)
Đặt \(\left\{{}\begin{matrix}a=\sqrt{x+5}\ge0\\b=\sqrt{x+2}\ge0\end{matrix}\right.\)
pt trên được viết lại thành
\(\left(a-b\right)\left(1+ab\right)=a^2-b^2\)
\(\Leftrightarrow\left(a-b\right)\left(1+ab-a-b\right)=0\)
\(\Leftrightarrow\left(a-b\right)\left(a-1\right)\left(b-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=1\\b=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+5}=\sqrt{x+2}\\\sqrt{x+5}=1\\\sqrt{x+2}=1\end{matrix}\right.\)
Đến đây thì dễ rồi nhé
tth, Hoàng Tử Hà, Bonking, Quoc Tran Anh Le, Vũ Huy Hoàng,
Akai Haruma, @Nguyễn Việt Lâm
giúp mk vs! ngày mai phải nộp r
a. ĐKXĐ: \(4-5x\ge0\) \(\Leftrightarrow-5x\ge-4\Leftrightarrow5x\le4\Leftrightarrow x\le\dfrac{4}{5}\)
\(\sqrt{4-5x}=12\)
\(\Leftrightarrow4-5x=2\sqrt{3}\)
\(\Leftrightarrow-5x=-4-2\sqrt{3}\)
\(\Leftrightarrow x=\dfrac{-4-2\sqrt{3}}{-5}\)
\(\Leftrightarrow x=\dfrac{4+2\sqrt{3}}{5}\left(KTMĐKXĐ\right)\)
Vậy x không tồn tại
b. \(10-2\sqrt{2x+1}=4\) (1)
\(ĐKXĐ:2x+1\ge0\Leftrightarrow2x\ge-1\Leftrightarrow x\ge-\dfrac{1}{2}\)
(1) => \(-2\sqrt{2x+1}=-6\)
\(\Leftrightarrow\sqrt{2x+1}=3\)
\(\Leftrightarrow2x+1=\sqrt{3}\)
\(\Leftrightarrow2x=\sqrt{3}-1\)
\(\Leftrightarrow x=\dfrac{\sqrt{3}-1}{2}\left(TMĐKXĐ\right)\)
c. \(5-\sqrt{x-1}=7\) (1)
ĐKXĐ: \(x-1\ge0\Leftrightarrow x\ge1\)
(1) <=> \(-\sqrt{x-1}=2\) (vô lí)
Vậy không tồn tại x
bài kia làm sai rùi:
a. \(\sqrt{4-5x}=12\) (1)
ĐKXĐ: \(4-5x\ge0\Leftrightarrow x\le\dfrac{4}{5}\)
\(\Leftrightarrow4-5x=144\)
\(\Leftrightarrow5x=-140\)
\(\Leftrightarrow x=-28\left(TMĐKXĐ\right)\)
Vậy phương trình có nghiệm là \(S=\left\{-28\right\}\)
b. \(10-2\sqrt{2x+1}=4\) (1)
ĐKXĐ: \(2x+1\ge0\Leftrightarrow x\ge-\dfrac{1}{2}\)
\(\left(1\right)\Leftrightarrow2\sqrt{2x+1}=6\)
\(\Leftrightarrow\sqrt{2x+1}=3\)
\(\Leftrightarrow2x+1=9\)
\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=4\left(TMĐKXĐ\right)\)
Vậy phương trình có nghiệm là: \(S=\left\{4\right\}\)
c. Ở dưới làm đúng rồi
d. \(\sqrt{10+\sqrt{3x}}=2+\sqrt{6}\) (1)
ĐKXĐ: \(3x\ge0\Leftrightarrow x\ge0\)
(1) \(\Leftrightarrow10+\sqrt{3x}=\left(2+\sqrt{6}\right)^2\)
\(\Leftrightarrow10+\sqrt{3x}=10+4\sqrt{6}\)
\(\Leftrightarrow\sqrt{3x}=-10+10+4\sqrt{6}\)
\(\Leftrightarrow\sqrt{3x}=4\sqrt{6}\)
\(\Leftrightarrow3x=96\)
\(\Leftrightarrow x=32\left(TMĐKXĐ\right)\)
Vậy phương trình có nghiệm là: \(S=\left\{32\right\}\)
e. \(\sqrt{x+1}+10=2\sqrt{x+1}-2\) (1)
ĐKXĐ: \(x+1\ge0\Leftrightarrow x\ge-1\)
\(\left(1\right)\Leftrightarrow\sqrt{x+1}-2\sqrt{x+1}=-10-2\)
\(\Leftrightarrow-\sqrt{x+1}=-12\)
\(\Leftrightarrow\sqrt{x+1}=12\)
\(\Leftrightarrow x+1=144\)
\(\Leftrightarrow x=143\left(TMĐKXĐ\right)\)
Vậy phương trình có nghiệm là \(S=\left\{143\right\}\)
f. \(\sqrt{16x+32}-5\sqrt{x+2}=-2\) (1)
ĐKXĐ: \(\left[{}\begin{matrix}\sqrt{16x+32\ge0}\\\sqrt{x+2\ge0}\end{matrix}\right.\left[{}\begin{matrix}x\ge-2\\x\ge-2\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{16\left(x+2\right)}-5\sqrt{x+2}=-2\)
\(\Leftrightarrow4\sqrt{x+2}-5\sqrt{x+2}=-2\)
\(\Leftrightarrow-\sqrt{x+2}=-2\)
\(\Leftrightarrow\sqrt{x+2}=2\)
\(\Leftrightarrow x+2=4\)
\(\Leftrightarrow x=2\left(TMĐKXĐ\right)\)
Vậy phương trình có nghiệm là \(S=\left\{2\right\}\)
ta chứng minh VT pt nhỏ hơn \(\sqrt{10}\) nên pt vô nghiệm.
thật vậy.
Áp dụng BĐT Cauchy ta có \(x^2+1\ge2\sqrt{x^2+1}\)
\(x^2-2x+5\ge2\sqrt{x^2-2x+5}\)
nên VT \(\le\frac{x^2+1+x^2-2x+5}{2}\)
VT \(\le x^2-x+3\le\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\le\frac{11}{4}< \sqrt{10}\)
Vậy PT vô nghiệm.
ngược dấu kìa :
ÁP dụng Minkowski:\(VT=\sqrt{x^2+1}+\sqrt{\left(1-x\right)^2+4}\ge\sqrt{\left(x+1-x\right)^2+\left(1+2\right)^2}=\sqrt{10}\)
dấu = xảy ra khi \(\frac{x}{1-x}=\frac{1}{2}\Leftrightarrow x=\frac{1}{3}\)