\(\sqrt{x+11}-\sqrt{10-3x}=\sqrt{1-x}\)

giải phương trình trên 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2021

\(\sqrt{x+11}-\sqrt{10-3x}=\sqrt{1-x}\left(1\ge x\ge-11\right)\)

\(\Leftrightarrow\left(x+11\right)+\left(10-3x\right)-2\sqrt{\left(x+11\right)\left(10-3x\right)}=1-x\\ \Leftrightarrow-2x+21-2\sqrt{-3x^2-23x+110}=1-x\\ \Leftrightarrow-2\sqrt{-3x^2-23x+110}=x-20\\ \Leftrightarrow4\left(-3x^2-23x+110\right)=x^2-40x+400\\ \Leftrightarrow-12x^2-92x+440=x^2-40x+400\\ \Leftrightarrow13x^2+52x-40=0\)

\(\Delta=52^2-4\cdot\left(-40\right)\cdot13=4784>0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-4\sqrt{299}-52}{26}\\x=\dfrac{4\sqrt{299}-52}{26}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2\sqrt{299}-26}{13}\\x=\dfrac{2\sqrt{299}-26}{13}\end{matrix}\right.\)

Tick nha

18 tháng 10 2020

a) \(\sqrt{2x-1}=\sqrt{5}\)

ĐK : \(x\ge\frac{1}{2}\)

Bình phương hai vế

pt <=> \(2x-1=25\)

    <=> \(2x=26\)

    <=> \(x=13\left(tm\right)\)

Vậy S = { 13 }

b) \(\sqrt{4-5x}=12\)

ĐK : \(x\le\frac{4}{5}\)

Bình phương hai vế

pt <=> \(4-5x=144\)

    <=> \(-5x=140\)

    <=> \(x=-28\left(tm\right)\)

Vậy S = { -28 }

c) \(\sqrt{x^2+6x+9}=3x-1\)< chắc hẳn là như này :]> 

<=> \(\sqrt{\left(x+3\right)^2}=3x-1\)

<=> \(\left|x+3\right|=3x-1\)

<=> \(\orbr{\begin{cases}x+3=3x-1\left(x\ge-3\right)\\-3-x=3x-1\left(x< -3\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x=2\left(tm\right)\\x=-\frac{1}{2}\left(ktm\right)\end{cases}}\)

Vậy S = { 2 }

d) \(2\sqrt{x}\le\sqrt{10}\)

ĐK : \(x\ge0\)

Bình phương hai vế

bpt <=> \(4x\le10\)

      <=> \(x\le\frac{10}{4}\)

Kết hợp với ĐK => Nghiệm của bất phương trình là \(0\le x\le\frac{10}{4}\)

18 tháng 10 2020

a) \(ĐKXĐ:x\ge\frac{1}{2}\)

 \(\sqrt{2x-1}=\sqrt{5}\)\(\Leftrightarrow2x-1=5\)

\(\Leftrightarrow2x-1=5\)\(\Leftrightarrow2x=6\)

\(\Leftrightarrow x=3\)( thỏa mãn ĐKXĐ )

Vậy nghiệm của phương trình là \(x=3\)

b) \(ĐKXĐ:x\le\frac{4}{5}\)

\(\sqrt{4-5x}=12\)\(\Leftrightarrow4-5x=144\)( bình phương 2 vế )

\(\Leftrightarrow5x=-140\)\(\Leftrightarrow x=-28\)( thỏa mãn ĐKXĐ )

Vậy nghiệm của phương trình là \(x=-28\)

c) \(ĐKXĐ:x\ge\frac{1}{3}\)

\(\sqrt{x^2+6x+9}=3x-1\)

\(\Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-1\)

\(\Leftrightarrow\left|x+3\right|=3x-1\)

+) TH1: Nếu \(x+3< 0\)\(\Leftrightarrow x< -3\)

thì \(\left|x+3\right|=-\left(x+3\right)=-x-3\)

\(\Rightarrow-x-3=3x-1\)\(\Leftrightarrow4x=-2\)

\(\Leftrightarrow x=\frac{-1}{2}\)(  không thỏa mãn ĐKXĐ )

+) TH2: \(x+3\ge0\)\(\Rightarrow x\ge-3\)

thì \(\left|x+3\right|=x+3\)

\(\Rightarrow x+3=3x-1\)\(\Leftrightarrow2x=4\)

\(\Leftrightarrow x=2\)( thỏa mãn ĐKXĐ )

Vậy nghiệm của phương trình là \(x=2\)

16 tháng 6 2017

mọi người ưi giúp tui giải câu a thui nha tui giải đc câu b ròi làm ơn nhanh giúp thanks nhìu nhìu

13 tháng 10 2019

a,đk -1<x<7

x+1+2 căn 7-x-2 căn x+1=căn (x+1)(7-x)

16 tháng 10 2016

\(\sqrt{x^2-3x+2}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{x^2+2x-3}\)

<=> \(\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)

<=> (\(\sqrt{x-1}-1\))(\(\sqrt{x-2}-\sqrt{x+3}\)) = 0

<=> \(\orbr{\begin{cases}\sqrt{x-1}=1\\\sqrt{x-2}=\sqrt{x+3}\end{cases}}\)

<=> x = 2

AH
Akai Haruma
Giáo viên
23 tháng 11 2018

Câu a:

ĐKXĐ:...........

\(\sqrt{x^2-x+9}=2x+1\)

\(\Rightarrow \left\{\begin{matrix} 2x+1\geq 0\\ x^2-x+9=(2x+1)^2=4x^2+4x+1\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x^2+5x-8=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x(x-1)+8(x-1)=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ (x-1)(3x+8)=0\end{matrix}\right.\Rightarrow x=1\)

Vậy.....

AH
Akai Haruma
Giáo viên
23 tháng 11 2018

Câu b:

ĐKXĐ:.........

Ta có: \(\sqrt{5x+7}-\sqrt{x+3}=\sqrt{3x+1}\)

\(\Rightarrow (\sqrt{5x+7}-\sqrt{x+3})^2=3x+1\)

\(\Leftrightarrow 5x+7+x+3-2\sqrt{(5x+7)(x+3)}=3x+1\)

\(\Leftrightarrow 3(x+3)=2\sqrt{(5x+7)(x+3)}\)

\(\Leftrightarrow \sqrt{x+3}(3\sqrt{x+3}-2\sqrt{5x+7})=0\)

\(x\geq -\frac{7}{5}\Rightarrow \sqrt{x+3}>0\). Do đó:

\(3\sqrt{x+3}-2\sqrt{5x+7}=0\)

\(\Rightarrow 9(x+3)=4(5x+7)\)

\(\Rightarrow 11x=-1\Rightarrow x=\frac{-1}{11}\) (thỏa mãn)

Vậy..........

21 tháng 7 2016

a) Đặt \(x^2+3x+1=y\)

=> y(y+1) - 6 = 0

=> \(y^2+y-6=0\)

=> \(\left[\begin{array}{nghiempt}y=2\\y=-3\end{array}\right.\)

Với y = 2 ta có:

\(x^2+3x+1=2\)

=> \(\left[\begin{array}{nghiempt}x=\frac{-3+\sqrt{13}}{2}\\x=\frac{-3-\sqrt{13}}{2}\end{array}\right.\)

Với y = -3 ta có:

\(x^2+3x+1=-3\)

=>\(\left[\begin{array}{nghiempt}x=1\\x=-4\end{array}\right.\)

Có j không hiểu có thể hỏi lại mk

Chúc bạn làm bài tốt 

21 tháng 7 2016

b) \(\Leftrightarrow\left(\sqrt{x+3}-\sqrt{x-2}\right)^2=1^2\)

\(\Leftrightarrow x+3+x-2-2\sqrt{\left(x+3\right)\cdot\left(x-2\right)}=1\)

\(\Leftrightarrow2x+1-1=2\sqrt{\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow2x=2\sqrt{\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow x=\sqrt{\left(x+3\right)\left(x-2\right)}\)

\(\Leftrightarrow x^2=\left(\sqrt{\left(x+3\right)\left(x-2\right)}\right)^2\)

\(\Leftrightarrow x^2=x^2+x-6\)

\(\Leftrightarrow x-6=0\)

\(\Leftrightarrow x=6\)

\(\sqrt{10\left(x-3\right)}=\sqrt{26}\)

\(\Rightarrow10\left(x-3\right)=26\)

\(\Rightarrow x-3=2.6\)

\(\Rightarrow x=3+2,6=5,6\)

\(\sqrt{3x^2}=x+2\Rightarrow3x^2=x^2+4x+4\)

\(\Rightarrow3x^2-x^2-4x-4=0\)

\(\Rightarrow2x^2-4x-4=0\)

\(\Rightarrow x^2-2x-2=0\)

\(a=1;b=-2;c=-2;b'=-1\)

\(\Delta'=b'^2-ac=\left(-1\right)^2-1.\left(-2\right)=3>0\)

Phương trình có 2 nghiệp phân biệt 

\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-\left(-1\right)+\sqrt{3}}{1}=1+\sqrt{3}\)

\(x_2=\frac{-b-\sqrt{\Delta'}}{a}=\frac{-\left(-1\right)-\sqrt{3}}{1}=1-\sqrt{3}\)

\(\sqrt{x^2+6x+9}=3x-6\)

\(x^2+6x+9=9x^2-36x+36\)

\(9x^2-x^2-36x-6x+36-9=0\)

\(8x^2-42x+27=0\)

\(a=8;b=-42;c=27;b'=-21\)

\(\Delta'=b'^2-ac=\left(-21\right)^2-8.27=225>0\)

Phương trình có 2 nghiệp phân biệt 

\(x_1=\frac{-b'+\sqrt{\Delta'}}{a}=\frac{-\left(-21\right)+\sqrt{225}}{8}=\frac{21+15}{8}=\frac{36}{8}=\frac{9}{2}\)

\(x_2=\frac{-b'-\sqrt{\Delta'}}{a}=\frac{-\left(-21\right)-\sqrt{225}}{8}=\frac{21-15}{8}=\frac{6}{8}=\frac{3}{4}\)

26 tháng 9 2020

               Bài làm :

\(a\text{)}\sqrt{x-3}=5\Leftrightarrow\sqrt{x-3}=\sqrt{25}\Leftrightarrow x-3=25\Leftrightarrow x=28\)

\(b\text{)}\sqrt{3x}=3\sqrt{5}\Leftrightarrow\sqrt{3x}=\sqrt{9}.\sqrt{5}\Leftrightarrow\sqrt{3x}=\sqrt{45}\Leftrightarrow3x=45\Leftrightarrow x=\frac{45}{3}=15\)

\(c\text{)}\sqrt{x^2+2x+1}=10\Leftrightarrow\sqrt{\left(x+1\right)^2}=\sqrt{100}\Leftrightarrow\left(x+1\right)^2=10\Leftrightarrow\orbr{\begin{cases}x+1=10\\x+1=-10\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=9\\x=-11\end{cases}}\)

26 tháng 9 2020

a) \(ĐKXĐ:x\ge3\)

\(\sqrt{x-3}=5\)\(\Leftrightarrow\left(\sqrt{x-3}\right)^2=5^2\)

\(\Leftrightarrow x-3=25\) \(\Leftrightarrow x=28\)( thỏa mãn )

Vậy \(x=28\)

b) \(ĐKXĐ:x\ge0\)

\(\sqrt{3x}=3\sqrt{5}\)\(\Leftrightarrow\left(\sqrt{3x}\right)^2=\left(3\sqrt{5}\right)^2\)

\(\Leftrightarrow3x=45\)\(\Leftrightarrow x=15\)( thỏa mãn )

Vậy \(x=15\)

c) \(ĐKXĐ:x\inℝ\)

\(\sqrt{x^2+2x+1}=10\)\(\Leftrightarrow\sqrt{\left(x+1\right)^2}=10\)

\(\Leftrightarrow\left|x+1\right|=10\)\(\Leftrightarrow\orbr{\begin{cases}x+1=-10\\x+1=10\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-11\\x=9\end{cases}}\)( thỏa mãn )

Vậy \(x=-11\)hoặc \(x=9\)