K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2019

đề bài ?

20 tháng 10 2019

TÌM X,Y

9 tháng 10 2016

CÁC câu này cứ bình phương 2 vế là ra ấy mà 

14 tháng 10 2018

a) Gọi biểu thức trên là A.

 \(ĐK:x\ge0\). Ta có: \(A=\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{\sqrt{x}}{\sqrt{x}+1}-\frac{3}{\sqrt{x}+1}\) (1)

Để \(x\in Z\) thì \(\frac{3}{\sqrt{x}+1}\in Z\Leftrightarrow\sqrt{x}+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Rightarrow\sqrt{x}=\left\{0;-2;2;-4\right\}\) nhưng do không có căn bậc 2 của số âm nên:

\(\sqrt{x}\in\left\{0;2\right\}\Leftrightarrow x\in\left\{0;4\right\}\). Thay vào (1) để thử lại ta thấy chỉ có x = 0 thỏa mãn.

Vậy có 1 nghiệm là x = 0

b) Gọi biểu thức trên là B. ĐK: \(x\ge0\)

\(B=\frac{2\left(\sqrt{2}-5\right)}{\sqrt{x}+1}=\frac{2\sqrt{2}-10}{\sqrt{x}+1}=\frac{2\sqrt{2}}{\sqrt{x}+1}-\frac{10}{\sqrt{x}+1}\)

Để \(x\in Z\) thì \(\frac{10}{\sqrt{x}+1}\in Z\Leftrightarrow\sqrt{x}+1\inƯ\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)

Đến đây bạn tiếp tục lập bảng tìm \(\sqrt{x}\) rồi bình phương tất cả các giá trị của \(\sqrt{x}\) để tìm được các giá trị của x nhé!. Nhưng lưu ý rằng làm xong phải thử lại bằng cách thế vào B để tìm nghiệm chính xác nhất nhé!

c) Tương tự như trên,bạn tự làm

d) Tương tự như câu a),bạn tự làm. Mình lười òi =))

28 tháng 10 2018

\(a,ĐK:x\ge-2\)

\(\sqrt{x+2}=3\)

\(\Leftrightarrow x+2=9\Rightarrow x=7\left(Tm\right)\)

\(b,\sqrt{x^2+3}=\sqrt{7}\)

\(\Leftrightarrow x^2+3=7\)

\(\Leftrightarrow x^2=4\Leftrightarrow x=\pm2\)

\(c,\sqrt{x}=0\Rightarrow x=0\)

\(d,\sqrt{x}=-3\)

Vì \(\sqrt{x}\ge0;-3< 0\)=> pt vô nghiệm

\(e,3\sqrt{x}=1\)

\(\Rightarrow\sqrt{x}=\frac{1}{3}\Rightarrow x=\frac{1}{9}\)

\(g,4-5\sqrt{x}=-1\)

\(\Rightarrow5\sqrt{x}=5\)

\(\Rightarrow\sqrt{x}=1\Rightarrow x=1\)

28 tháng 10 2018

a,\(\sqrt{x+2}=3\Leftrightarrow x+2=3^2\Leftrightarrow x=9-2=7\)

b,\(\sqrt{x^2+3}=\sqrt{7}\Leftrightarrow x^2+3=7\Leftrightarrow x^2=4\Leftrightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)

c,\(\sqrt{x}=0\Leftrightarrow x=0\)

d,\(\sqrt{x}=-3\Leftrightarrow x=\left(-3\right)^2\Leftrightarrow x=9\)

e,g tương tự các câu trên bạn tự làm ik mk mỏi tay lắm r

12 tháng 9 2018

a) \(\sqrt{x^2-4x+4}=\sqrt{\left(x-2\right)^2}=3\Leftrightarrow x-2=3\Leftrightarrow x=5\)

b) \(\sqrt{x^2-12}=2\) \(\Leftrightarrow x^2-12=4\Leftrightarrow x^2=16\Leftrightarrow x=\pm4\)

c) \(\sqrt{x+3}=x+3\Leftrightarrow x+3-\sqrt{x+3}=0\)

\(\Leftrightarrow\sqrt{x+3}\left(\sqrt{x+3}-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+3=1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\)

mấy câu còn lại bn làm tương tự

12 tháng 9 2018

Mysterious Person Akai Haruma

22 tháng 7 2017

bn lấy máy tính mà tính ý

22 tháng 7 2017

Bài1:

Ta có:

a)\(\sqrt{\dfrac{3^2}{5^2}}=\sqrt{\dfrac{9}{25}}=\dfrac{3}{5}\)

b)\(\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}=\dfrac{\sqrt{9}+\sqrt{1764}}{\sqrt{25}+\sqrt{4900}}=\dfrac{3+42}{5+70}=\dfrac{45}{75}=\dfrac{3}{5}\)

c)\(\dfrac{\sqrt{3^2}-\sqrt{8^2}}{\sqrt{5^2}-\sqrt{8^2}}=\dfrac{\sqrt{9}-\sqrt{64}}{\sqrt{25}-\sqrt{64}}=\dfrac{3-8}{5-8}=\dfrac{-5}{-3}=\dfrac{5}{3}\)

Từ đó, suy ra: \(\dfrac{3}{5}=\sqrt{\dfrac{3^2}{5^2}}=\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}\)

Bài 2:

Không có đề bài à bạn?

Bài 3:

a)\(\sqrt{x}-1=4\)

\(\Rightarrow\sqrt{x}=5\)

\(\Rightarrow x=\sqrt{25}\)

\(\Rightarrow x=5\)

b)Vd:\(\sqrt{x^4}=\sqrt{x.x.x.x}=x^2\Rightarrow\sqrt{x^4}=x^2\)

Từ Vd suy ra:\(\sqrt{\left(x-1\right)^4}=16\)

\(\Rightarrow\left(x-1\right)^2=16\)

\(\Rightarrow\left(x-1\right)^2=4^2\)

\(\Rightarrow x-1=4\)

\(\Rightarrow x=5\)

24 tháng 10 2019

1.

ĐKXĐ: \(x\ge0\) cho tất cả các câu

a) x = 6 (thỏa mãn)

b) vô nghiệm vì VT≥0 mà VP < 0

c) x = 5 (thỏa mãn)

d) \(\sqrt{x}=\left|-31\right|=31\)

x = 961(thỏa mãn)

bài 2 tương tự

24 tháng 10 2019

Bài 2:

a) \(x^2-23=0\)

\(\Rightarrow x^2=0+23\)

\(\Rightarrow x^2=23\)

\(\Rightarrow\left[{}\begin{matrix}x=\sqrt{23}\\x=-\sqrt{23}\end{matrix}\right.\)

Vậy \(x\in\left\{\sqrt{23};-\sqrt{23}\right\}.\)

b) \(7-\sqrt{x}=0\)

\(\Rightarrow\sqrt{x}=7-0\)

\(\Rightarrow\sqrt{x}=7\)

\(\Rightarrow\sqrt{x}=\left(\sqrt{7}\right)^2\)

\(\Rightarrow\sqrt{x}=\sqrt{49}\)

\(\Rightarrow x=49\)

Vậy \(x=49.\)

Chúc bạn học tốt!

19 tháng 9 2017

1. a)\(2\&\sqrt{5}\)

\(2=\sqrt{4}\)

=> \(2< \sqrt{5}\)

b)\(5\&\sqrt{23}\)

\(5=\sqrt{25}\)

=> \(5>\sqrt{23}\)

c) \(\sqrt{23}+\sqrt{13}\&\sqrt{83}\)

\(\left(\sqrt{23}+\sqrt{13}\right)^2=36+2\sqrt{229}\)

\(\left(\sqrt{83}\right)^2=83\)

\(\Rightarrow36+2\sqrt{299}< 83\)

=> \(\sqrt{23}+\sqrt{13}< \sqrt{83}\)

2. a) \(\sqrt{x}=5;x\ge0\)

=> x = 25

b) \(3\sqrt{x}=6;x\ge0\)

=> x = 4

c) trùng

d) \(3-\sqrt{3+1}=1\)

\(3-\sqrt{3+1}=3-2=1\)

19 tháng 9 2017

1)

a)\(2=\sqrt{4}< \sqrt{5}\)

b) \(5=\sqrt{25}>\sqrt{23}\)

c) \(\sqrt{83}>\sqrt{81}=9\)

\(\left\{{}\begin{matrix}\sqrt{23}< \sqrt{25}=5\\\sqrt{13}< \sqrt{16}=4\end{matrix}\right.\)

\(\sqrt{23}+\sqrt{13}< 4+5=9\)

Vậy \(\sqrt{23}+\sqrt{13}< \sqrt{83}\)

2) Ta có:

\(\sqrt{x}=5\Rightarrow x=25\)

\(3\sqrt{x}=6\Rightarrow\sqrt{x}=2\Rightarrow x=4\)

\(3-\sqrt{3+1}=1\)

Nên:

\(3-2=1\)(luôn đúng)