K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=x\sqrt{x}\)

19 tháng 5 2022

\(x\sqrt{x}\)

21 tháng 7 2021

ĐK: `{(3x+4>=0),(1+2x>=0),(x+3>=0):}<=> {(x>=-4/3),(x>=-1/2),(x>=-3):} <=> x>=-1/2`

AH
Akai Haruma
Giáo viên
12 tháng 10

Lời giải:

Cho $x=3$ thì:

$P(2)+2P(2)=2^2\Rightarrow 3P(2)=4\Rightarrow P(2)=\frac{4}{3}$

$\Rightarrow P(x-1)=x^2-2P(2)=x^2-2.\frac{4}{3}=x^2-\frac{8}{3}$

$\Rightarrow P(x)=(x+1)^2-\frac{8}{3}$

Thay $x=\sqrt{2013}-1$ ta có:

$P(\sqrt{2013}-1)=(\sqrt{2013}-1+1)^2-\frac{8}{3}=2013-\frac{8}{3}=\frac{6031}{3}$

29 tháng 10 2020

\(x=3+2\sqrt{2}\)    

\(x-3-2\sqrt{2}=0\)    

\(x-\left(3+2\sqrt{2}\right)=0\)   Vậy nhân tử của \(x=3+2\sqrt{2}\)   là \(x-\left(3+2\sqrt{2}\right)\)

22 tháng 10 2018

đúng vậy bn

22 tháng 10 2018

Mik cx ko biết 

Ko những bị thế , lại còn mất nik . Như kiểu ai đó hack nik .

Ko vào nik đc

16 tháng 2 2022

\(a,A=\left(\dfrac{x+14\sqrt{x}-5}{x-25}+\dfrac{\sqrt{x}}{\sqrt{x}+5}\right):\dfrac{\sqrt{x}+2}{\sqrt{x}-5}\)

\(\Rightarrow A=\left(\dfrac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}-5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\left(\dfrac{x+14\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}+\dfrac{x-5\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\right).\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\dfrac{x+14\sqrt{x}-5+x-5\sqrt{x}}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\dfrac{2x+9\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}.\dfrac{\sqrt{x}-5}{\sqrt{x}+2}\)

\(\Rightarrow A=\dfrac{2x+10\sqrt{x}-\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

\(\Rightarrow A=\dfrac{2\sqrt{x}\left(\sqrt{x}+5\right)-\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

\(\Rightarrow A=\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+5\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

\(\Rightarrow A=\dfrac{2\sqrt{x}-1}{\sqrt{x}+2}\)

2 tháng 6 2016

T có hệ điều kiện:

\(\hept{\begin{cases}\left(x-1\right)\left(x+1\right)\ge0\left(1\right)\\\left(x-1\right)\left(9-x\right)\ge0\left(2\right)\\\left(x-1\right)\left(2x-12\right)\ge0\left(3\right)\end{cases}}\)

Sử dụng xét dấu trong trái ngoài cùng, ta có: 

\(\left(1\right)\Leftrightarrow x\le-1\) hoặc \(x\ge1\)

\(\left(2\right)\Leftrightarrow1\le x\le9\)

\(\left(3\right)\Leftrightarrow x\le1\) hoặc \(x\ge6\)

Biểu diễn nghiệm trên trục như sau:

(1):  1 -1 ] [

(2):  1 ] [ [ 9

(3):  ] 1 6 ] [

Kết hợp cả ba ta có: 

-1 1 ] [ ] 9 [ 6 ]

Vậy điều kiện cuối là \(6\le x\le9\)

Cô giải chi tiết đó :)) Chúc em học tốt :)

12 tháng 7 2019

Em thử nha,sai thì thôi ạ.

2/ ĐK: \(-2\le x\le2\)

PT \(\Leftrightarrow\sqrt{2x+4}-\sqrt{8-4x}=\frac{6x-4}{\sqrt{x^2+4}}\)

Nhân liên hợp zô: với chú ý rằng \(\sqrt{2x+4}+\sqrt{8-4x}>0\) với mọi x thỏa mãn đk

PT \(\Leftrightarrow\frac{6x-4}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{6x-4}{\sqrt{x^2+4}}=0\)

\(\Leftrightarrow\left(6x-4\right)\left(\frac{1}{\sqrt{2x+4}+\sqrt{8-4x}}-\frac{1}{\sqrt{x^2+4}}\right)=0\)

Tới đây thì em chịu chỗ xử lí cái ngoặc to rồi..

13 tháng 7 2019

1.\(\left(\sqrt{x+3}-\sqrt{x+1}\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\)

ĐK \(x\ge-1\)

Nhân liên hợp ta có

\(\left(x+3-x-1\right)\left(x^2+\sqrt{x^2+4x+3}\right)=2x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)

<=>\(x^2+\sqrt{\left(x+1\right)\left(x+3\right)}=x\left(\sqrt{x+3}+\sqrt{x+1}\right)\)

<=> \(\left(x^2-x\sqrt{x+3}\right)+\left(\sqrt{\left(x+1\right)\left(x+3\right)}-x\sqrt{x+1}\right)=0\)

<=> \(\left(x-\sqrt{x+3}\right)\left(x-\sqrt{x+1}\right)=0\)

<=> \(\orbr{\begin{cases}x=\sqrt{x+3}\\x=\sqrt{x+1}\end{cases}}\)

=> \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)

Vậy \(x\in\left\{\frac{1+\sqrt{13}}{2};\frac{1+\sqrt{5}}{2}\right\}\)

NV
21 tháng 6 2019

ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}+\sqrt{x+3}=\sqrt{x-2}+\sqrt{\left(x-1\right)\left(x+3\right)}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x-1}=a>0\\\sqrt{x-2}=b\ge0\\\sqrt{x+3}=c>0\end{matrix}\right.\)

\(\Leftrightarrow ab+c=b+ac\)

\(\Leftrightarrow a\left(b-c\right)-\left(b-c\right)=0\)

\(\Leftrightarrow\left(a-1\right)\left(b-c\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\b=c\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x-2}=\sqrt{x+3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\-2=3\left(vn\right)\end{matrix}\right.\)