\((\sqrt(x-5))/(\sqrt(x+3))= (3)/(8)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2019

\(d,x-5\sqrt{x}=0\)

\(ĐKXĐ:x\ge0\)

\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\\sqrt{x}=5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=25\end{cases}}\)(Thỏa mãn ĐKXĐ)

Vậy...

a: \(\Leftrightarrow2\sqrt{x}=4\)

=>căn x=2

=>x=4

 

tích mình đi

ai tích mình

mình tích lại

thanks

8 tháng 8 2017

mình chưa học vi ét nha

8 tháng 8 2017

a) điều kiện \(x\in Q\)

ta có : \(A=\dfrac{\sqrt{x}+8}{\sqrt{x}+3}=\dfrac{\sqrt{x}+3+5}{\sqrt{x}+3}=1+\dfrac{5}{\sqrt{x}+3}\)

ta có : \(A\) nguyên \(\Leftrightarrow\) \(\dfrac{5}{\sqrt{x}+3}\) nguyên \(\Leftrightarrow\) \(\sqrt{x}+3\) thuộc ước của 5 là \(\pm1;\pm5\)

ta có : * \(\sqrt{x}+3=1\Leftrightarrow\sqrt{x}=-2\left(vôlí\right)\)

* \(\sqrt{x}+3=-1\Leftrightarrow\sqrt{x}=-4\left(vôlí\right)\)

* \(\sqrt{x}+3=5\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\left(tmđk\right)\)

* \(\sqrt{x}+3=-5\Leftrightarrow\sqrt{x}=-8\left(vôlí\right)\)

27 tháng 2 2017

Ước

27 tháng 2 2017

Akai HarumangonhuminhHoàng Thị Ngọc AnhHoang Hung Quangiúp mình vs

22 tháng 7 2017

bn lấy máy tính mà tính ý

22 tháng 7 2017

Bài1:

Ta có:

a)\(\sqrt{\dfrac{3^2}{5^2}}=\sqrt{\dfrac{9}{25}}=\dfrac{3}{5}\)

b)\(\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}=\dfrac{\sqrt{9}+\sqrt{1764}}{\sqrt{25}+\sqrt{4900}}=\dfrac{3+42}{5+70}=\dfrac{45}{75}=\dfrac{3}{5}\)

c)\(\dfrac{\sqrt{3^2}-\sqrt{8^2}}{\sqrt{5^2}-\sqrt{8^2}}=\dfrac{\sqrt{9}-\sqrt{64}}{\sqrt{25}-\sqrt{64}}=\dfrac{3-8}{5-8}=\dfrac{-5}{-3}=\dfrac{5}{3}\)

Từ đó, suy ra: \(\dfrac{3}{5}=\sqrt{\dfrac{3^2}{5^2}}=\dfrac{\sqrt{3^2}+\sqrt{42^2}}{\sqrt{5^2}+\sqrt{70^2}}\)

Bài 2:

Không có đề bài à bạn?

Bài 3:

a)\(\sqrt{x}-1=4\)

\(\Rightarrow\sqrt{x}=5\)

\(\Rightarrow x=\sqrt{25}\)

\(\Rightarrow x=5\)

b)Vd:\(\sqrt{x^4}=\sqrt{x.x.x.x}=x^2\Rightarrow\sqrt{x^4}=x^2\)

Từ Vd suy ra:\(\sqrt{\left(x-1\right)^4}=16\)

\(\Rightarrow\left(x-1\right)^2=16\)

\(\Rightarrow\left(x-1\right)^2=4^2\)

\(\Rightarrow x-1=4\)

\(\Rightarrow x=5\)

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

a)

ĐKXĐ: \(2x\geq 0\Leftrightarrow x\geq 0\)

Vậy TXĐ của $x$ là \(D= [0;+\infty)\)

b)

ĐK: \((2x-1)(x+3)\neq 0\Leftrightarrow \left\{\begin{matrix} 2x-1\neq 0\\ x+3\neq 0\end{matrix}\right.\Leftrightarrow \Leftrightarrow \left\{\begin{matrix} x\neq \frac{1}{2}\\ x\neq -3\end{matrix}\right.\)

Vậy TXĐ \(D=\mathbb{R}\setminus \left\{\frac{1}{2}; -3\right\}\)

c)

ĐK: \(8x^3+1\neq 0\Leftrightarrow x^3\neq \frac{-1}{8}\Leftrightarrow x\neq \frac{-1}{2}\)

Vậy TXĐ \(D=\mathbb{R}\setminus \left\{\frac{-1}{2}\right\}\)

AH
Akai Haruma
Giáo viên
14 tháng 8 2019

d)

ĐK:

\(|x-2015|+1\neq 0\Leftrightarrow |x-2015|\neq -1\Leftrightarrow x\in\mathbb{R}\)

Vậy TXĐ \(D=\mathbb{R}\)

e)

ĐK: \(\left\{\begin{matrix} |x-1,2|\neq 0\\ 2x-5\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 1,2\\ x\neq 2,5\end{matrix}\right.\)

Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{1,2; 2,5\right\}\)

f)

ĐK: \(x^2-4\neq 0\Leftrightarrow (x-2)(x+2)\neq 0\Leftrightarrow x\neq \pm 2\)

Vậy TXĐ: \(D=\mathbb{R}\setminus \left\{\pm 2\right\}\)