K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ĐKXĐ: x^2-6x+12>=0

=>x^2-6x+9+3>=0

=>(x-3)^2+3>=0(luôn đúng)

ĐKXĐ: (-6x+7)/(x^2+4x+6)>=0

=>-6x+7>=0

=>x<=7/6

23 tháng 9 2021

\(ĐK:x\ge0;x\ne4\\ P=\dfrac{5x+10\sqrt{x}-\left(3-\sqrt{x}\right)\left(\sqrt{x}-2\right)-6x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ P=\dfrac{5x+10\sqrt{x}-5\sqrt{x}+6+x-6x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ P=\dfrac{5\sqrt{x}+6}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

23 tháng 9 2021

\(P=\dfrac{5\sqrt{x}}{\sqrt{x}-2}-\dfrac{3-\sqrt{x}}{\sqrt{x}+2}+\dfrac{6x}{4-x}\left(đk:x\ge0,x\ne4\right)\)

\(=\dfrac{5\sqrt{x}\left(\sqrt{x}+2\right)-\left(3-\sqrt{x}\right)\left(\sqrt{x}-2\right)-6x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{5x+10\sqrt{x}+x-5\sqrt{x}+6-6x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{5\sqrt{x}+6}{x-4}\)

4 tháng 1 2019

Câu ( a ) sai đề !!! 

b ) 

\(\left(x+4\right)\sqrt{x^3+9}=x^3+x+12\)

\(\Leftrightarrow\left[\left(x+4\right)\sqrt{x^3+9}\right]^2=\left(x^3+x+12\right)^2\)

\(\Leftrightarrow\left(x+4\right)^2.\left(x^3+9\right)=\left(x^3+x\right)^2+2.\left(x^3+x\right).12+144\)

\(\Leftrightarrow\left(x^2+8x+16\right)\left(x^3+9\right)=x^6+2x^4+x^2+24x^3+24x+144\)

\(\Leftrightarrow\hept{\begin{cases}x^6+2x^4+24x^3+x^2+24x+144\ge0\\x^6+9x^2+8x^4+72x+16x^3+144=x^6+2x^4+24x^3+x^2+24x+144\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^6+2x^4+24x^3+x^2+24x+144\ge0\\6x^4-8x^3+8x^2+48x=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^6+2x^4+24x^3+x^2+24x+144\ge0\\x\left(6x^3-8x^2+8x+48\right)=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^6+2x^4+24x^3+x^2+24x+144\ge0\\x=0\left(nhan\right);6x^3-8x^2+8x+48=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x^6+2x^4+24x^3+x^2+24x+144\ge0\\x=0\left(nhan\right);x=-2\left(nhan\right)\end{cases}}\)

Vậy x =0 hoặc x = -2 

20 tháng 11 2019

x,y là số nguyên tố đúng ko?

20 tháng 11 2019

ĐK \(-1\le x\le7\)

Ta có \(VT=x^2-6x+13=\left(x-3\right)^2+4\ge4\)(1)

\(2VP=\sqrt{4\left(7-x\right)}+\sqrt{4\left(x+1\right)}\le\frac{4+7-x+4+1+x}{2}=8\)

=> \(VP\le4\)(2)

Từ (1);(2)

=> đẳng thức xảy ra khi x=3(tm ĐKXĐ)

Vậy x=3

\(P=\dfrac{2x+2+x+\sqrt{x}+1-x+\sqrt{x}-1}{\sqrt{x}}\)

\(=\dfrac{2x+2\sqrt{x}+2}{\sqrt{x}}\)

a) \(ĐKXĐ:2x^2+6x+1\ge0\)

Với \(x\ge2\) pt cho trở thành :

\(2x^2+6x+1=x^2+4x+4\)

\(\Leftrightarrow x^2-2x-3=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+1\right)=0\)

\(\Leftrightarrow x=3\) ( do \(x\ge2\) )

Vậy pt có tập nghiệm \(S=\left\{3\right\}\)

14 tháng 5 2021

\(a.\sqrt{2x^2+6x+1}=x+2\Leftrightarrow\left\{{}\begin{matrix}x+2\ge0\\2x^2+6x+1=x^2+4x+4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x^2+2x-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\end{matrix}\right.\Leftrightarrow x=1\\ \Rightarrow S=\left\{1\right\}\)

\(b.\) ĐKXĐ: \(y\ne0\)\(\left(I\right)\Rightarrow x+\dfrac{1}{y}=\dfrac{x}{y}+\dfrac{1}{y}\Leftrightarrow x=\dfrac{x}{y}\Leftrightarrow x\left(1-\dfrac{1}{y}\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\y=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=\dfrac{1}{2}\\x=1\end{matrix}\right.\left(TM\right)\Rightarrow S=\left\{\left(0;\dfrac{1}{2}\right);\left(1;1\right)\right\}\)

27 tháng 5 2017

bạn chỉ cần cố gắng là làm được