\(\sqrt{\left(3-\sqrt{10}\right)^2}+\sqrt{11-2\sqrt{10}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2021

\(=\left|3-\sqrt{10}\right|+\sqrt{\left(\sqrt{10}-1\right)^2}\\ =\sqrt{10}-3+\sqrt{10}-1=\sqrt{10}-4\)

29 tháng 9 2020

1) \(\left(\sqrt{6}-\sqrt{8}\right)\left(\sqrt{6}+\sqrt{8}\right)\)

\(=\left(\sqrt{6}\right)^2-\left(\sqrt{8}\right)^2\)

\(=6-8=-2\)

2) \(\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)\)

\(=3^2-\left(\sqrt{5}\right)^2\)

\(=9-5=4\)

29 tháng 9 2020

3) \(\sqrt{7-4\sqrt{3}}+\sqrt{7+4\sqrt{3}}\)

\(=\sqrt{4-4\sqrt{3}+3}+\sqrt{4+4\sqrt{3}+3}\)

\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)

\(=2-\sqrt{3}+2+\sqrt{3}=4\)

4) Xét ta thấy: \(2\sqrt{3}=\sqrt{12}< \sqrt{16}=4\)

=> \(2\sqrt{3}-4< 0\) => vô lý không tm đk căn

1 tháng 7 2016

câu E dễ nhất nên mình làm trước , các câu còn lại làm tương tự ( biến đổi thành hằng đẳng thức rồi rút gọn ) :

\(E=\sqrt{9-2.3.\sqrt{6}+6}+\sqrt{24-2.2\sqrt{6}.3+9}\)

\(=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)

\(=\left|3-\sqrt{6}\right|+\left|2\sqrt{6}-3\right|\)      

\(=3-\sqrt{6}+2\sqrt{6}-3\)   ( vì \(3-\sqrt{6}>0;2\sqrt{6}-3>0\) )

\(=\sqrt{6}\)

 

18 tháng 6 2017

sai ngay từ đầu limdim

1: \(=\sqrt{36}=6\)

2: \(=\sqrt{\left(15-9\right)\left(15+9\right)}=\sqrt{24\cdot6}=12\)

3: \(=3\sqrt{5}-1-3\sqrt{5}-1=-2\)

4: \(=3\sqrt{2}+\sqrt{3}-3\sqrt{2}+\sqrt{3}=2\sqrt{3}\)

5: \(=\left(2+\sqrt{5}\right)\left(\sqrt{5}-2\right)=5-4=1\)

15 tháng 7 2015

C : \(0,2.\sqrt{\left(-10\right)^2.3}+2\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}=10.0,2\sqrt{3}+2l\sqrt{3}-\sqrt{5}l=2\sqrt{3}+2\sqrt{5}-2\sqrt{3}=2\sqrt{5}\)

1 tháng 12 2016
  • \(A=\sqrt{11-2\sqrt{10}}=\sqrt{\left(\sqrt{10}-1\right)^2}=\sqrt{10}-1\)
  • \(B=\left(\sqrt{28}-2\sqrt{4}+\sqrt{7}\right).\sqrt{7}+7\sqrt{7}=\left(2\sqrt{7}-2\sqrt{4}+\sqrt{7}\right).\sqrt{7}+7\sqrt{7}\)

\(=\left(3\sqrt{7}-4\right).\sqrt{7}+7\sqrt{7}=3\sqrt{7}+3\sqrt{7}=6\sqrt{7}\)

  • \(C=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\frac{\sqrt{4+2\sqrt{3}}+\sqrt{4-2\sqrt{3}}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}+\sqrt{\left(\sqrt{3}-1\right)^2}}{\sqrt{2}}=\frac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)

  • \(D=0,2.\sqrt{10^2.3}+2\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}=2\sqrt{3}+2\left(\sqrt{3}-\sqrt{5}\right)=4\sqrt{3}-2\sqrt{5}\)
16 tháng 6 2018

a)\(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

\(=\sqrt{10\left(4-\sqrt{15}\right)}+\sqrt{6\left(4-\sqrt{15}\right)}\)

\(=\sqrt{40-10\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)

\(=\sqrt{\left(5-\sqrt{15}\right)^2}+\sqrt{\left(3-\sqrt{15}\right)^2}\)

\(=5-\sqrt{15}+\sqrt{15}-3\)

\(=2\)

b) \(2\left(\sqrt{10}-\sqrt{2}\right)\left(4+\sqrt{6-2\sqrt{5}}\right)\)

\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(4+\sqrt{\left(1-\sqrt{5}\right)^2}\right)\)

\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(4+\sqrt{5}-1\right)\)

\(=\left(2\sqrt{10}-2\sqrt{2}\right)\left(3+\sqrt{5}\right)\)

\(=6\sqrt{10}+2\sqrt{50}-6\sqrt{2}-2\sqrt{10}\)

\(=6\sqrt{10}+10\sqrt{2}-6\sqrt{2}-2\sqrt{10}\)

\(=4\sqrt{10}+4\sqrt{2}\)

c) \(\left(\sqrt{7}+\sqrt{14}\right)\sqrt{9-2\sqrt{14}}\)

\(=\left(\sqrt{7}+\sqrt{14}\right)\sqrt{\left(\sqrt{2}-\sqrt{7}\right)^2}\)

\(=\left(\sqrt{7}+\sqrt{14}\right)\left(\sqrt{7}-\sqrt{2}\right)\)

\(=7\sqrt{7}-7\sqrt{2}+\sqrt{98}-\sqrt{28}\)

\(=7\sqrt{7}-7\sqrt{2}+7\sqrt{2}-2\sqrt{7}\)

\(=5\sqrt{7}\)

16 tháng 6 2018

d) \(\sqrt{\dfrac{289+4\sqrt{72}}{16}}\)

\(=\sqrt{\dfrac{289+42\sqrt{2}}{16}}\)

\(=\dfrac{\sqrt{289+42\sqrt{2}}}{\sqrt{4^2}}\)

\(=\dfrac{\sqrt{\left(1+12\sqrt{2}\right)^2}}{4}\)

\(=\dfrac{1+12\sqrt{2}}{4}\)

e) \(\left(\sqrt{21}+7\right)\sqrt{10-2\sqrt{21}}\)

\(=\left(\sqrt{21}+\sqrt{7}\right)\sqrt{\left(\sqrt{3}-\sqrt{7}\right)^2}\)

\(=\left(\sqrt{21}+\sqrt{7}\right)\left(\sqrt{7}-\sqrt{3}\right)\)

\(=\sqrt{147}-\sqrt{63}+7-\sqrt{21}\)

\(=7\sqrt{3}-\sqrt{63}+7-\sqrt{21}\)

f) bạn xem đề lại nhé

13 tháng 7 2016

@.@ Trời ơi, nhiều thế ^^

a) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}-3\sqrt{0,4}\right)=\left(2\sqrt{2}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}-\frac{3\sqrt{2}}{\sqrt{5}}\right)\)

\(=\left(\sqrt{2}.\sqrt{5}-\sqrt{2}\right)\left(\sqrt{2}-\frac{3\sqrt{2}}{\sqrt{5}}\right)=2\sqrt{5}-2-6+\frac{6}{\sqrt{5}}=\frac{16\sqrt{5}}{5}-8\)

b) \(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}=\frac{75\sqrt{2}+50\sqrt{2}-45\sqrt{2}}{\sqrt{10}}=\frac{80\sqrt{2}}{\sqrt{10}}=\frac{80}{\sqrt{5}}=16\sqrt{5}\)c) \(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}=\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(2-\sqrt{2}\right)^3}\)

\(=2+\sqrt{2}+2-\sqrt{2}=4\)

d) \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)}^2\)

\(=\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)

e) \(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)

\(=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)

f)\(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\sqrt[3]{\left(\sqrt{2}-1\right)^3}=1+\sqrt{2}-\sqrt{2}+1=2\)g) \(\sqrt[3]{26+15\sqrt{3}}-\sqrt[3]{26-15\sqrt{3}}=\sqrt[3]{\left(2+\sqrt{3}\right)^3}-\sqrt[3]{\left(2-\sqrt{3}\right)^3}\)

\(=2+\sqrt{3}-2+\sqrt{3}=2\sqrt{3}\)