Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4\left(x+1\right)^2=\sqrt{2\left(x^4+x^2+1\right)}\)
\(\Leftrightarrow16\left(x+1\right)^4=2\left(x^4+x^2+1\right)\)
\(\Leftrightarrow\left(x^2+3x+1\right)\left(7x^2+11x+7\right)=0\)
\(\sqrt{\frac{x+56}{16}+\sqrt{x-8}}=\frac{x}{8}\)
\(\Leftrightarrow2\sqrt{x+56+16\sqrt{x-8}}=x\)
\(\Leftrightarrow2\sqrt{\left(\sqrt{x-8}+8\right)^2}=x\)
\(\Leftrightarrow2\sqrt{x-8}+16=x\)
\(\Leftrightarrow x=24\)
\(A=\frac{\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}}{\sqrt{\left(\frac{4}{x}-1\right)^2}}\)
\(=\frac{\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}}{\sqrt{\left(1-\frac{4}{x}\right)^2}}=\frac{\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|}{1-\frac{4}{x}}\)
- Với \(x\ge8\Rightarrow\sqrt{x-4}-2\ge0\)
\(\Rightarrow A=\frac{\sqrt{x-4}+2+\sqrt{x-4}-2}{\frac{x-4}{x}}=\frac{2x\sqrt{x-4}}{x-4}=\frac{2x}{\sqrt{x-4}}\)
- Với \(4< x\le8\)
\(\Rightarrow A=\frac{\sqrt{x-4}+2+2-\sqrt{x-4}}{\frac{x-4}{x}}=\frac{4x}{x-4}\)
\(\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\frac{16}{\frac{16}{x^2}-\frac{8}{x}+1}}\)\(=\frac{\sqrt{x-4+4\sqrt{x-4}+4}+\sqrt{x-4-4\sqrt{x-4}+4}}{\left(\frac{4}{x}-1\right)^2}\)
\(\frac{\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}}{\left(\frac{4}{x}-1\right)^2}\)\(=\frac{\sqrt{x-4}+2+\sqrt{x-4}-2}{\left(\frac{4-x}{x}\right)^2}\)
\(=\frac{2\sqrt{x-4}}{\left(\frac{4-x}{x}\right)^2}=\frac{2x^2\sqrt{x-4}}{\left(x-4\right)^2}=\frac{2x^2}{\sqrt{x-4}^3}\)
bài bạn YIM YIM sai nhé, mk làm lại và chỉnh lại đề luôn, bạn tham khảo:
ĐK: \(x>4\)
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\frac{16}{x^2}-\frac{8}{x}+1}\)
\(=\frac{\sqrt{\left(\sqrt{x-4}+2\right)^2}+\sqrt{\left(\sqrt{x-4}-2\right)^2}}{\left(1-\frac{4}{x}\right)^2}\)
\(=\frac{\sqrt{x-4}+2+\left|\sqrt{x-4}-2\right|}{\left(\frac{x-4}{x}\right)^2}\)
Nếu \(4< x\le8\)thì:
\(A=\frac{\sqrt{x-4}+2+2-\sqrt{x-4}}{\left(\frac{x-4}{x}\right)^2}\)
\(=\frac{4x^2}{\left(x-4\right)^2}\)
Nếu \(x>8\)thì:
\(A=\frac{\sqrt{x-4}+2+\sqrt{x-4}-2}{\frac{\left(x-4\right)^2}{x^2}}=\frac{2x^2}{\sqrt{x-4}^3}\)