\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}+\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}+\sqrt{\fra...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 3 2018

Xét \(\sqrt{1+x^3}=\sqrt{\left(1+x\right)\left(1-x+x^2\right)}\le\frac{1+x+1-x+x^2}{2}=\frac{x^2+2}{2}\)

      \(\Rightarrow\sqrt{\frac{1}{1+x^3}}\ge\frac{2}{x^2+2}\)

Xét \(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}=\sqrt{\frac{1}{1+\frac{\left(b+c\right)^3}{a^3}}}\)  \(=\sqrt{\frac{1}{\left(1+\frac{b+c}{a}\right)\left(1-\frac{b+c}{a}+\frac{\left(b+c\right)^2}{a^2}\right)}}\)

       \(\Rightarrow\sqrt{\frac{1}{\left(1+\frac{b+c}{a}\right)\left(1-\frac{b+c}{a}+\frac{\left(b+c\right)^2}{a^2}\right)}}\ge\frac{2}{\frac{\left(b+c\right)^2}{a^2}+2}\) 

         \(=\frac{2a^2}{b^2+c^2+2bc+2a^2}\ge\frac{2a^2}{2b^2+2c^2+2a^2}\) (1)  (cái này bạn tự quy đồng sau đó áp dụng cosi cho 2bc)

Tương tự  \(\sqrt{\frac{b^3}{b^3+\left(a+c\right)^3}}\ge\frac{2b^2}{2a^2+2b^2+2c^2}\)  (2)     \(\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge\frac{2c^2}{2a^2+2b^2+2c^2}\)  (3)

 Cộng các vế của (1),(2) và (3) ta có đpcm

                                                                                   

18 tháng 10 2020

Xét bất đẳng thức phụ\(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}\ge\frac{a^2}{a^2+b^2+c^2}\)(*)

Thật vậy: (*)\(\Leftrightarrow2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\ge a\left(b+c\right)^3\)

Áp dụng kết hợp bất đẳng thức Bunyakovsky dạng phân thức và bất đẳng thức AM - GM, ta được: \(2a^2\left(b^2+c^2\right)+\left(b^2+c^2\right)^2\ge a^2\left(b+c\right)^2+\frac{\left(b+c\right)^4}{4}\ge2\sqrt{\frac{a^2\left(b+c\right)^6}{4}}=\left(b+c\right)^3\)

Vậy bất đẳng thức phụ trên là đúng. Tương tự rồi cộng lại ta được \(VT\ge1\)

Đẳng thức xảy ra khi 3 biến bằng nhau hoặc có 2 biến dần về 0

5 tháng 2 2020

Áp dụng BĐT Cô-si cho 3 số dương, ta có :

\(\frac{1}{a\left(a+b\right)}+\frac{1}{b\left(b+c\right)}+\frac{1}{c\left(a+c\right)}\ge3\sqrt[3]{\frac{1}{abc\left(a+b\right)\left(b+c\right)\left(a+c\right)}}\)

Cần chứng minh : \(\sqrt[3]{\frac{1}{abc\left(a+b\right)\left(b+c\right)\left(a+c\right)}}\ge\frac{9}{2\left(a+b+c\right)^2}\)

hay \(8\left(a+b+c\right)^6\ge729abc\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

Thật vậy, ta có : \(\left(a+b+c\right)^3\ge\left(3\sqrt[3]{abc}\right)^3=27abc\)

\(8\left(a+b+c\right)^3=\left(2\left(a+b+c\right)\right)^3=\left(a+b+b+c+a+c\right)^3\)

\(\ge\left(3\sqrt[3]{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\right)^3=27\left(a+b\right)\left(b+c\right)\left(a+c\right)\)

Nhân từng vế 2 bất đẳng thức trên, ta được đpcm

Dấu "=" xảy ra khi a = b = c 

Vậy ...

5 tháng 2 2020

2. Áp dụng BĐT Cô-si cho 3 số không âm, ta có : 

\(B\ge3\sqrt[3]{\sqrt{\left(a^3+b^3+1\right)\left(b^3+c^3+1\right)\left(a^3+c^3+1\right)}}\)

Ta có : \(a^3+b^3+1\ge3\sqrt[3]{a^3b^3}=3ab\Rightarrow\sqrt{a^3+b^3+1}\ge\sqrt{3ab}\)

Tương tự : ....

\(\Rightarrow\sqrt{\left(a^3+b^3+1\right)\left(b^3+c^3+1\right)\left(c^3+a^3+1\right)}\ge\sqrt{27a^2b^2c^2}=\sqrt{27}\)

\(\Rightarrow B\ge3\sqrt[3]{\sqrt{27}}=3\sqrt{3}\)

Vậy GTNN của B là \(3\sqrt{3}\)khi a = b = c = 1

19 tháng 11 2019

Đặt \(x=\frac{b+c}{a}>0\) .Ta cần CM:

\(\sqrt{1+x^3}\le1+\frac{1}{2}x^2\Leftrightarrow\left(x^2+2\right)^2\ge4\left(x^3+1\right)\)

\(\Leftrightarrow x^4-4x^3+4x^2\ge0\Leftrightarrow x^2\left(x-2\right)^2\ge0\)

BĐT cuối đúng => đpcm 

ĐT xảy ra<=> \(b+c=2a\)

19 tháng 11 2019

Làm tiếp:) 

Ta có: \(\sqrt{\frac{a^3}{a^3+\left(b+c\right)^3}}\ge\frac{a^2}{a^2+b^2+c^2};\)

\(\sqrt{\frac{b^3}{b^3+\left(c+a\right)^3}}\ge\frac{b^2}{a^2+b^2+c^2}\)

\(\sqrt{\frac{c^3}{c^3+\left(a+b\right)^3}}\ge\frac{c^2}{a^2+b^2+c^2}\)

Cộng theo vế 3 BĐT trên ta đc đpcm .

ĐT xảy ra<=> a=b=c

4 tháng 8 2017

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{2\sqrt[3]{abc}}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

cauchy-schwarz: 

\(VT=\frac{c^2}{ac^2+bc^2}+\frac{a^2}{a^2b+a^2c}+\frac{b^2}{b^2c+b^2a}+\frac{\sqrt[3]{a^2b^2c^2}}{2abc}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)