Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt[3]{3x+1}+\sqrt[3]{5-x}+\sqrt[3]{2x-9}-\sqrt[3]{4x-3}=0\)
Đây nè @Võ Hồng Phúc(Phúc bím)
3a) ta có \(\frac{a^2}{a+b}=a-\frac{ab}{a+b}>=a-\frac{ab}{2\sqrt{ab}}=a-\frac{\sqrt{ab}}{2}\)
vì \(a,b>0,a+b>=2\sqrt{ab}nên\frac{ab}{a+b}< =\frac{ab}{2\sqrt{ab}}\)
tương tự \(\frac{b^2}{b+c}=b-\frac{bc}{b+c}>=b-\frac{bc}{2\sqrt{bc}}=b-\frac{\sqrt{bc}}{2}\)
tương tự \(\frac{c^2}{c+a}=c-\frac{ca}{c+a}>=c-\frac{ca}{2\sqrt{ca}}=c-\frac{\sqrt{ca}}{2}\)
cộng từng vế BĐT ta được \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}>=a+b+c-\frac{\sqrt{ab}}{2}-\frac{\sqrt{bc}}{2}-\frac{\sqrt{ca}}{2}=\frac{2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}}{2}\left(1\right)\)
giả sử \(\frac{2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}}{2}>=\frac{a+b+c}{2}\)
<=> \(2a+2b+2c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}>=a+b+c\)
<=> \(a+b+c-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}>=0\)
<=> \(2a+2b+2c-2\sqrt{ab}-2\sqrt{bc}-2\sqrt{ca}>=0\)
<=> \(\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt{b}-\sqrt{c}\right)^2+\left(\sqrt{a}-\sqrt{c}\right)^2>=0\)
(đúng với mọi a,b,c >0) (2)
(1),(2)=> \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}>=\frac{a+b+c}{2}\left(đpcm\right)\)
\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)
\(\Leftrightarrow a^2+b^2+c^2+d^2+2\sqrt{a^2+b^2}\sqrt{c^2+d^2}\ge\left(a+c\right)^2+\left(b+d\right)^2\)
\(\Leftrightarrow2\sqrt{a^2+b^2}\sqrt{c^2+d^2}\ge2ac+2bd\)
\(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)
BĐT cuối đúng theo BĐT Bunhiacopski
Dấu "=" khi \(\frac{a}{c}=\frac{b}{d}\)
Em thử nha, sai thì thôia) bình phương và rút gọn, ta cần chứng minh:
\(2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge2ac+2bd\)
\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\)
Tới đây có thể áp dụng bđt bunhiacopki và thu được đpcm. Nếu không thì
\(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)-\left(ac+bd\right)^2\ge0\)
\(\Leftrightarrow\left(ad-bc\right)^2\ge0\) (đúng)
Đẳng thức xảy ra khi ad = bc
\( a)\sqrt {{a^2} + {b^2}} + \sqrt {{c^2} + {d^2}} \ge \sqrt {{{\left( {a + c} \right)}^2} + {{\left( {b + d} \right)}^2}} \left( * \right)\\ \Leftrightarrow {a^2} + {b^2} + {c^2} + {d^2} + 2\sqrt {{{\left( {a + b} \right)}^2}{{\left( {c + d} \right)}^2}} \ge {a^2} + 2ac + {c^2} + {b^2} + 2bd + {d^2}\\ \Leftrightarrow \sqrt {\left( {{a^2} + {b^2}} \right)\left( {{c^2} + {d^2}} \right)} \ge ac + bd\left( 1 \right) \)
Nếu \(ac+bd<0\) thì (1) đúng
Nếu \(ac+bd\ge0\) thì (1) \(\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\) (đúng)
Dấu "=" của bất đẳng thức (*) xảy ra:
\(\Leftrightarrow\left\{{}\begin{matrix}ac+bd\ge0\\\left(ad-bc\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}ac+bd\ge0\\ab-bc=0\end{matrix}\right.\)
1) Áp dụng BĐT bun-hi-a-cốp-xki ta có:
\(\left(a+d\right)\left(b+c\right)\ge\left(\sqrt{ab}+\sqrt{cd}\right)^2\)
\(\Leftrightarrow\sqrt{\left(a+d\right)\left(b+c\right)}\ge\sqrt{ab}+\sqrt{cd}\)( vì a,b,c,d dương )
Dấu " = " xảy ra \(\Leftrightarrow\frac{a}{b}=\frac{c}{d}\)
mà đề cho (a^2 + b^2) + (c^2 + d^2) thì phải liên tưởng đến (a^2 + b^2)(c^2 + d^2) để đưa vào bất đẳng thức. Vậy phải xuất phát từ biểu thức này và biến đổi theo một cách nào đó cho nó xuất hiện giả thiết là : ad - bc = 1. Ở đây là thêm và bớt 2abcd
Ta có: (a^2 + b^2)(c^2 + d^2) = (ac)^2 + (bd)^2 + (ad)^2 + (bc)^2 - 2abcd + 2abcd = (ad - bc)^2 + (ac + bd)^2
Thay: ad - bc = 1 => 1 + (ac + bd)^2 = (a^2 + b^2)(c^2 + d^2)
Áp dụng BĐT Cauchy:
(a^2 + b^2) + (c^2 + d^2) ≥ 2√[(a^2 + b^2)(c^2 + d^2)]
=> a^2 + b^2 + c^2 + d^2 + ac + bd ≥ 2√[(a^2 + b^2)(c^2 + d^2)] + ac + bd
Do đó chỉ cần CM: 2√[(a^2 + b^2)(c^2 + d^2)] + ac + bd ≥ √3
<=> 2 √[1 + (ac + bd)^2] + ac + bd ≥ √3
Đặt ac + bd = x và p = 2√(1 + x^2) + x
Ta có IxI = √(x^2) < 2√(1 + x^2) ; mà IxI ≥ -x => p > 0
Xét: p^2 = 4(1 + x)^2 + 4x√(1 + x^2) + x^2 = (1 + x^2) + 4x√(1 + x^2) + 4x^2 + 3
= [√(1 + x^2) + 2x]^2 + 3 ≥ 3 => p^2 ≥ 3 => p ≥ √3
=> S ≥ √3
b/ Dấu đẳng thức xảy ra khi a^2 + b^2 = c^2 + d^2 và √(1 + x^2) + 2x = 0 => x = -1/√3
Khi đó có: a^2 + b^2 = c^2 + d^2 và ac + bd = -1/√3 và ad - bc = 1
Theo biến đổi ở đầu bài thì (a^2 + b^2)(c^2 + d^2) = (ad - bc)^2 + (ac + bd)^2 = 1 + 1/3 = 4/3
Do đó: a^2 + b^2 = c^2 + d^2 = 2/√3
Ta có: (a + c)^2 + (b + d)^2 = a^2 + c^2 + b^2 + d^2 + 2ac + 2bd = 2. 2/√3 + 2.(-1/√3) = 2/√3
vậy: (a + c)^2 + (b + d)^2 = 2/√3
Học chi cho lắm cx bằng nhau à
a. \(C=\sqrt{\frac{a-1-2\sqrt{a-1}+1}{a-1+2\sqrt{a-1}+1}}:\frac{a-2}{\left(\sqrt{a-1}+1\right)^2}=\frac{\left(\sqrt{a-1}-1\right)^2}{\left(\sqrt{a-1}+1\right)^2}.\frac{\left(\sqrt{a-1}+1\right)^2}{a-2}=\frac{\left(\sqrt{a-1}-1\right)^2}{a-2}\)
b.\(B=\left(x-\left(\sqrt{y}-1\right)^2\right)+2\sqrt{y}+1=x-y+2\sqrt{y}-1+2\sqrt{y}+1=x+4\sqrt{y}+y\)
c.\(C=\sqrt{a^2+1-2\sqrt{a^2+1}+1}=\sqrt{a^2+1}-1\)
bn ơi mk nghĩ câu c ấy , cái chỗ -2 bn nên đổi thành 2