Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình không biết đề bài của bạn như thế nào quan trọng là điều kiện của a
và hầu hết các bài toán có thể sử dụng UCT thì mẫu lớn hơn hoặc bằng 0.
Theo phương pháp UCT thì có thể làm như thế này:
Thay a = 1 vào khi đó xảy ra dấu bằng:
\(m+n=\frac{\sqrt{3}}{2}\)=> \(n=\frac{\sqrt{3}}{2}-m\)
Thay vào bất đẳng thức:
\(\frac{\sqrt{3a}}{3-a}\ge ma+\frac{\sqrt{3}}{2}-m\)
<=> \(\sqrt{3}\left(\frac{\sqrt{a}}{3-a}-\frac{1}{2}\right)\ge m\left(a-1\right)\)
<=> \(\sqrt{3}\left(\frac{2\sqrt{a}-3+a}{2\left(3-a\right)}\right)\ge m\left(a-1\right)\)
<=> \(\sqrt{3}\left(\frac{\left(\sqrt{a}+3\right)\left(\sqrt{a}-1\right)}{2\left(3-a\right)}\right)\ge m\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)\)
Cần điều kiện của a và đề bài lần sau em nhớ chép nguyên cái đề bài nhé!
=> \(m\le\frac{\sqrt{3}\left(\sqrt{a}+3\right)}{2\left(3-a\right)\left(\sqrt{a}+1\right)}\)
Xét tại điểm rơi a = 1
\(m=\frac{\sqrt{3}}{2}\)=> n = 0
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
Ta có: a,b không âm(gt)
\(\Leftrightarrow\sqrt{a}\) và \(\sqrt{b}\) được xác định
Ta có: \(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)
![](https://rs.olm.vn/images/avt/0.png?1311)
1. Ta có:
\(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( Nếu a, b ≥ 0)
=> \(a-2\sqrt{ab}+b\ge0\)
=> \(\left(a-2\sqrt{ab}+b\right)+2\sqrt{ab}\ge0+2\sqrt{ab}\)
=> \(a+b\ge2\sqrt{ab}\) => \(\frac{\left(a+b\right)}{2}\ge\frac{2\sqrt{ab}}{2}\)
=> \(\frac{\left(a+b\right)}{2}\ge\sqrt{ab}\);
(Dấu "=" xảy ra khi \(\sqrt{a}-\sqrt{b}=0\) => a = b)
1. BĐT \(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
2. BĐT \(\Leftrightarrow\frac{a+b}{2}\ge\frac{\left(\sqrt{a}+\sqrt{b}\right)^2}{4}\)
\(\Leftrightarrow2\left(a+b\right)\ge a+2\sqrt{ab}+b\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow a=b\)
3. Ta có: \(M=\frac{2}{\sqrt{1\cdot2005}}+\frac{2}{\sqrt{2\cdot2004}}+...+\frac{2}{\sqrt{1003\cdot1003}}\)
Áp dụng BĐT Cô-si:
\(\sqrt{1\cdot2005}\le\frac{1+2005}{2}=1003\)
Do dấu "=" không xảy ra nên \(\sqrt{1\cdot2005}< 1003\)
Khi đó: \(\frac{2}{\sqrt{1\cdot2005}}>\frac{2}{1003}\)
Chứng minh tương tự với các phân thức còn lại rồi cộng vế ta được :
\(M>\frac{2006}{1003}>\frac{2005}{1003}\) ( đpcm )
![](https://rs.olm.vn/images/avt/0.png?1311)
2/
a/ \(\sqrt{a}+\frac{1}{\sqrt{a}}\ge2\sqrt{\sqrt{a}.\frac{1}{\sqrt{a}}}=2\), dấu "=" khi \(a=1\)
b/ \(a+b+\frac{1}{2}=a+\frac{1}{4}+b+\frac{1}{4}\ge2\sqrt{a.\frac{1}{4}}+2\sqrt{b.\frac{1}{4}}=\sqrt{a}+\sqrt{b}\)
Dấu "=" khi \(a=b=\frac{1}{4}\)
c/ Có lẽ bạn viết đề nhầm, nếu đề đúng thế này thì mình ko biết làm
Còn đề như vậy: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\) thì làm như sau:
\(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\) ; \(\frac{1}{y}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\); \(\frac{1}{x}+\frac{1}{z}\ge\frac{2}{\sqrt{yz}}\)
Cộng vế với vế ta được:
\(\frac{2}{x}+\frac{2}{y}+\frac{2}{z}\ge\frac{2}{\sqrt{xy}}+\frac{2}{\sqrt{yz}}+\frac{2}{\sqrt{xz}}\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xz}}\)
Dấu "=" khi \(x=y=z\)
d/ \(\frac{\sqrt{3}+2}{\sqrt{3}-2}-\frac{\sqrt{3}-2}{\sqrt{3}+2}=\frac{\left(\sqrt{3}+2\right)\left(\sqrt{3}+2\right)}{\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)}-\frac{\left(\sqrt{3}-2\right)\left(\sqrt{3}-2\right)}{\left(\sqrt{3}+2\right)\left(\sqrt{3}-2\right)}\)
\(=\frac{7+4\sqrt{3}}{3-4}-\frac{7-4\sqrt{3}}{3-4}=-7-4\sqrt{3}+7-4\sqrt{3}=-8\sqrt{3}\)
e/ \(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{ab}}:\frac{1}{\sqrt{a}-\sqrt{b}}=\frac{\left(\sqrt{a}\right)^3+\left(\sqrt{b}\right)^3}{\sqrt{ab}}.\left(\sqrt{a}-\sqrt{b}\right)\)
\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}=\frac{\left(a-b\right)\left(a+b-\sqrt{ab}\right)}{\sqrt{ab}}\)
\(=\frac{a^2-b^2}{\sqrt{ab}}-\left(a-b\right)\) (bạn chép đề sai)
![](https://rs.olm.vn/images/avt/0.png?1311)
3.
\(5a^2+2ab+2b^2=\left(a^2-2ab+b^2\right)+\left(4a^2+4ab+b^2\right)\)
\(=\left(a-b\right)^2+\left(2a+b\right)^2\ge\left(2a+b\right)^2\)
\(\Rightarrow\sqrt{5a^2+2ab+2b^2}\ge2a+b\)
\(\Rightarrow\frac{1}{\sqrt{5a^2+2ab+2b^2}}\le\frac{1}{2a+b}\)
Tương tự \(\frac{1}{\sqrt{5b^2+2bc+2c^2}}\le\frac{1}{2b+c};\frac{1}{\sqrt{5c^2+2ca+2a^2}}\le\frac{1}{2c+a}\)
\(\Rightarrow P\le\frac{1}{2a+b}+\frac{1}{2b+c}+\frac{1}{2c+a}\)
\(\le\frac{1}{9}\left(\frac{1}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)
\(=\frac{1}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\le\frac{1}{3}.\sqrt{3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)}=\frac{\sqrt{3}}{3}\)
\(\Rightarrow MaxP=\frac{\sqrt{3}}{3}\Leftrightarrow a=b=c=\sqrt{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có \(1^2=\left(\sqrt{a}\sqrt{b}+\sqrt{b}\sqrt{c}+\sqrt{c}\sqrt{a}\right)^2\le\left(a+b+c\right)\left(b+c+a\right)\)
\(\Rightarrow\left(a+b+c\right)^2\ge1\Rightarrow a+b+c\ge1\)
\(\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}=\frac{1}{2}\left(a+b+c\right)\ge\frac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)
Ta sẽ phân tích:
\(\sqrt{a^2+ab+b^2}=\sqrt{k\left(a-b\right)^2+\left(ma+nb\right)^2}\ge\sqrt{\left(ma+nb\right)^2}=ma+nb\)
Khi đó:
\(a^2+ab+b^2=\left(k+m^2\right)a^2+\left(2mn-2k\right)ab+\left(k+n^2\right)b^2\)
Đồng nhất hệ thức:
=> \(\hept{\begin{cases}1=k+m^2\left(1\right)\\1=\left(2mn-2k\right)\left(2\right)\\1=k+n^2\left(3\right)\end{cases}}\)
Thay a = b = 1/3 vào \(\sqrt{a^2+ab+b^2}\ge ma+nb\)ta có: \(m+n=\sqrt{3}\)(4)
Từ (1); (3) => \(m^2-n^2=0\)
<=> ( m-n ) ( m+n ) =0
<=> m = n thế vào (4)
=> m = n = \(\frac{\sqrt{3}}{2}\)thế vào (2) => \(k=\frac{1}{4}\)
\(\sqrt{a^2+ab+b^2}=\sqrt{\frac{1}{4}\left(a-b\right)^2+\left(\frac{\sqrt{3}}{2}a+\frac{\sqrt{3}}{2}b\right)^2}\ge\frac{\sqrt{3}}{2}a+\frac{\sqrt{3}}{2}b\)