\(\sqrt{9x^2-6x+1}=4\)

\(\sqrt{10x^2+10x+25}=x+4\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2020

Em biết làm mỗi ý đầu thôi ạ :(

\(\sqrt{9x^2-6x+1}=4\)

\(\Leftrightarrow\sqrt{\left(3x-1\right)^2}=4\)

\(\Leftrightarrow\left|3x-1\right|=4\)

\(\Leftrightarrow\orbr{\begin{cases}3x-1=4\\3x-1=-4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-1\end{cases}}\)

Vậy S = { 5/3 ; -1 }

16 tháng 8 2020

bạn kiểm tra lại đề bài câu (b) nhé! mình nghĩ là \(\sqrt{x^2+10x+25}=x+4\) chuẩn hơn

Y
22 tháng 5 2019

a) \(\Leftrightarrow\sqrt{\left(x+3\right)^2}=4\)

\(\Leftrightarrow\left|x+3\right|=4\) \(\Leftrightarrow\left[{}\begin{matrix}x+3=4\\x+3=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\) ( TM )

b) \(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=5x+3\)

\(\Leftrightarrow\left|2x-1\right|=5x+3\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x+3\ge0\\\left[{}\begin{matrix}2x-1=5x+3\\2x-1=-5x-3\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\frac{3}{5}\\\left[{}\begin{matrix}x=-\frac{4}{3}\left(KTM\right)\\x=-\frac{2}{7}\left(TM\right)\end{matrix}\right.\end{matrix}\right.\)

22 tháng 5 2019

a \(\sqrt{x^2+6x+9}=4\Leftrightarrow\sqrt{\left(x+3\right)^2=4}\)

\(\Leftrightarrow x+3=4\)

\(\Rightarrow x=1\)

27 tháng 6 2018

a)\(\sqrt{3x+2}=2-\sqrt{3}\)

\(\Leftrightarrow3x+2=\left(2-\sqrt{3}\right)^2\)

\(\Leftrightarrow3x+2=7-4\sqrt{3}\)

\(\Leftrightarrow3x=7-2-4\sqrt{3}\)

\(\Leftrightarrow3x=5-4\sqrt{3}\)

\(\Leftrightarrow x=\dfrac{5}{3}-\dfrac{4\sqrt{3}}{3}\)

\(\Leftrightarrow x=\dfrac{5-4\sqrt{3}}{3}\)

b) \(\sqrt{x^2-4x+4}=49\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2}=49\)

\(\Leftrightarrow\left|x-2\right|=49\)\

\(\Leftrightarrow\left[{}\begin{matrix}x-2=49\\-x+2=49\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=51\\x=-47\end{matrix}\right.\)

27 tháng 6 2018

c) \(\sqrt{x+1}=x-1\)

ĐKXĐ: \(x-1\ge0\Rightarrow x\ge1\)

\(\Leftrightarrow x+1=\left(x-1\right)^2\)

\(\Leftrightarrow x+1=x^2-2x+1\)

\(\Leftrightarrow-x^2+2x+x=-1+1\)

\(\Leftrightarrow3x-x^2=0\)

\(\Leftrightarrow x\left(3-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(lo\text{ại}\right)\\x=3\left(nh\text{ậ}n\right)\end{matrix}\right.\)

d)e) lát mình làm sau

19 tháng 7 2017

\(\sqrt{9x^2-6x+1}+\sqrt{25-30x+9x^2}\)

\(=\sqrt{\left(3x-1\right)^2}+\sqrt{\left(5-3x\right)^2}\)

\(=\left|3x-1\right|+\left|5-3x\right|\)

\(\ge\left|3x-1+5-3x\right|=4\)

18 tháng 7 2019
https://i.imgur.com/vtt9DTn.jpg
18 tháng 7 2019

Gửi em

\(---\begin{gathered} a)\sqrt {1 - 6x + 9{x^2}} = 5 \hfill \\ \Leftrightarrow \sqrt {{{\left( {1 - 3x} \right)}^2}} = 5 \hfill \\ \Leftrightarrow \left| {1 - 3x} \right| = 5 \hfill \\ T{H_1}:1 - 3x \geqslant 0 \Rightarrow x \leqslant \frac{1}{3} \hfill \\ 1 - 3x = 5 \hfill \\ \Leftrightarrow - 3x = 5 - 1 \hfill \\ \Leftrightarrow - 3x = 4 \hfill \\ \Leftrightarrow x = - \frac{4}{3}\left( {TM} \right) \hfill \\ T{H_2}:1 - 3x < 0 \Rightarrow x > \frac{1}{3} \hfill \\ - \left( {1 - 3x} \right) = 5 \hfill \\ \Leftrightarrow - 1 + 3x = 5 \hfill \\ \Leftrightarrow 3x = 5 + 1 \hfill \\ \Leftrightarrow 3x = 6 \hfill \\ \Leftrightarrow x = \frac{6}{3} \hfill \\ \Leftrightarrow x = 2\left( {TM} \right) \hfill \\ b)\sqrt {{x^2} - 4x + 4} = 7 \hfill \\ \Leftrightarrow \sqrt {{{\left( {x - 2} \right)}^2}} = 7 \hfill \\ \Leftrightarrow \left| {x - 2} \right| = 7 \hfill \\ T{H_1}:x - 2 \geqslant 0 \Rightarrow x \geqslant 2 \hfill \\ x - 2 = 7 \hfill \\ \Leftrightarrow x = 7 + 2 \hfill \\ \Leftrightarrow x = 9\left( {TM} \right) \hfill \\ T{H_2}:x - 2 < 0 \Rightarrow x < 2 \hfill \\ - \left( {x - 2} \right) = 7 \hfill \\ \Leftrightarrow - x + 2 = 7 \hfill \\ \Leftrightarrow - x = 7 - 2 \hfill \\ \Leftrightarrow - x = 5 \hfill \\ \Leftrightarrow x = - 5\left( {TM} \right) \hfill \\ c)\sqrt {25 - 10x + {x^2}} = 7 - 2x \hfill \\ \Leftrightarrow \sqrt {{{\left( {5 - x} \right)}^2}} = 7 - 2x \hfill \\ \Leftrightarrow \left| {5 - x} \right| = 7 - 2x \hfill \\ \Leftrightarrow \left| {5 - x} \right| + 2x = 7 \hfill \\ T{H_1}:5 - x \geqslant 0 \Rightarrow x \leqslant 5 \hfill \\ 5 - x + 2x = 7 \hfill \\ \Leftrightarrow 5 + x = 7 \hfill \\ \Leftrightarrow x = 7 - 5 \hfill \\ \Leftrightarrow x = 2\left( {TM} \right) \hfill \\ T{H_2}:5 - x < 0 \Rightarrow x > 5 \hfill \\ - \left( {5 - x} \right) + 2x = 7 \hfill \\ \Leftrightarrow - 5 + x + 2x = 7 \hfill \\ \Leftrightarrow 3x = 7 + 5 \hfill \\ \Leftrightarrow 3x = 12 \hfill \\ \Leftrightarrow x = 4\left( {KTM} \right) \hfill \\ d)\sqrt {{x^2} + 6x + 9} = 3x - 1 \hfill \\ \Leftrightarrow \sqrt {{{\left( {x + 3} \right)}^2}} = 3x - 1 \hfill \\ \Leftrightarrow \left| {x + 3} \right| = 3x - 1 \hfill \\ \Leftrightarrow \left| {x + 3} \right| - 3x = - 1 \hfill \\ T{H_1}:x + 3 \geqslant 0 \Rightarrow x \geqslant - 3 \hfill \\ x + 3 - 3x = - 1 \hfill \\ \Leftrightarrow - 2x = - 1 - 3 \hfill \\ \Leftrightarrow - 2x = - 4 \hfill \\ \Leftrightarrow x = \frac{{ - 4}}{{ - 2}} \hfill \\ \Leftrightarrow x = 2\left( {TM} \right) \hfill \\ T{H_2}:x + 3 < 0 \Rightarrow x < - 3 \hfill \\ - \left( {x + 3} \right) - 3x = - 1 \hfill \\ \Leftrightarrow - x - 3 - 3x = - 1 \hfill \\ \Leftrightarrow - 4x = - 1 + 3 \hfill \\ \Leftrightarrow - 4x = 2 \hfill \\ \Leftrightarrow x = \frac{2}{{ - 4}} \hfill \\ \Leftrightarrow x = - \frac{1}{2}\left( {KTM} \right) \hfill \\ \end{gathered} \)

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

1)

ĐK: \(x\geq 5\)

PT \(\Leftrightarrow \sqrt{4(x-5)}+3\sqrt{\frac{x-5}{9}}-\frac{1}{3}\sqrt{9(x-5)}=6\)

\(\Leftrightarrow \sqrt{4}.\sqrt{x-5}+3\sqrt{\frac{1}{9}}.\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=6\)

\(\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=6\)

\(\Leftrightarrow 2\sqrt{x-5}=6\Rightarrow \sqrt{x-5}=3\Rightarrow x=3^2+5=14\)

AH
Akai Haruma
Giáo viên
14 tháng 10 2018

2)

ĐK: \(x\geq -1\)

\(\sqrt{x+1}+\sqrt{x+6}=5\)

\(\Leftrightarrow (\sqrt{x+1}-2)+(\sqrt{x+6}-3)=0\)

\(\Leftrightarrow \frac{x+1-2^2}{\sqrt{x+1}+2}+\frac{x+6-3^2}{\sqrt{x+6}+3}=0\)

\(\Leftrightarrow \frac{x-3}{\sqrt{x+1}+2}+\frac{x-3}{\sqrt{x+6}+3}=0\)

\(\Leftrightarrow (x-3)\left(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}\right)=0\)

\(\frac{1}{\sqrt{x+1}+2}+\frac{1}{\sqrt{x+6}+3}>0, \forall x\geq -1\) nên $x-3=0$

\(\Rightarrow x=3\) (thỏa mãn)

Vậy .............

a) giải pt ra ta được  : x=-1

b) giải pt ra ta được  : x=2

c)giải pt ra ta được  : x vô ngiệm

d)giải pt ra ta được  : x=vô ngiệm

~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~

~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~

11 tháng 7 2017

a, ĐK \(x\le2\)

\(\Rightarrow\sqrt{2-x}=2\Rightarrow2-x=4\Rightarrow x=-2\left(tm\right)\)

b, \(\sqrt{x^2-10x+25}=9\Rightarrow x^2-10x+25=81\Rightarrow x^2-10x-56=0\)

\(\Rightarrow\left(x-14\right)\left(x+4\right)=0\Rightarrow\orbr{\begin{cases}x=14\\x=-4\end{cases}}\)

c. \(\sqrt{9-6x^2+x^4}=x^2+1\Rightarrow9-6x^2+x^4=x^4+2x^2+1\)do \(9-6x^2+x^4\ge0\forall x\)

\(\Rightarrow-8x^2=-8\Rightarrow x^2=1\Rightarrow\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

11 tháng 7 2016

a) \(\sqrt{x^2-10x+25}+\sqrt{x^2-6x+9}=\sqrt{\left(x-5\right)^2}+\sqrt{\left(x-3\right)^2}=\left|x-5\right|+\left|x-3\right|\)

Vì x > 5 nên x - 5 > 0 , x - 3 > 0

=> \(\left|x-5\right|+\left|x-3\right|=x-5+x-3=2x-8\)

b) Điều kiện phải là \(2\le x< 3\)

 \(\sqrt{x^2-6x+9}-\sqrt{x^2-4x+4}=\sqrt{\left(x-3\right)^2}-\sqrt{\left(x-2\right)^2}=\left|x-3\right|-\left|x-2\right|\)

Vì \(2\le x< 3\Rightarrow\hept{\begin{cases}x-2\ge0\\x-3< 0\end{cases}}\)

=> \(\left|x-3\right|-\left|x-2\right|=3-x-\left(x-2\right)=-2x+5\)