Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, dk \(1-16x^2\ge0\Leftrightarrow\left(1-4x\right)\left(1+4x\right)\ge0\)
\(\Leftrightarrow-\frac{1}{4}\le x\le\frac{1}{4}\)
b tuong tu
c, \(\sqrt{\left(x-3\right)\left(5-x\right)}\ge0\Leftrightarrow\left(x-3\right)\left(5-x\right)\ge0\Leftrightarrow3\le x\le5\)
d.\(\sqrt{x^2-x+1}>0\)
ma \(x^2-x+1=x^2-2.\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
suy ra thoa man vs moi x
Nếu bạn tinh mắt một chút sẽ thấy:
Câu a: \(5\sqrt{2x-1}+2\sqrt{2x-1}-3\sqrt{x}=6\sqrt{2x-1}-2\sqrt{x}\)
Tương đương \(\sqrt{2x-1}=\sqrt{x}\Leftrightarrow\hept{\begin{cases}2x-1=x\\x\ge0\end{cases}}\Leftrightarrow x=1\).
Câu b: \(2\sqrt{x-5}-\sqrt{x-5}=\sqrt{1-x}\).
Tương đương \(\sqrt{x-5}=\sqrt{1-x}\Leftrightarrow\hept{\begin{cases}x\le1\\x-5=1-x\end{cases}}\) (vô nghiệm)
Câu c: \(\sqrt{\left(x+3\right)\left(x-3\right)}-2\sqrt{x-3}=0\)
Tương đương \(\orbr{\begin{cases}x-3=0\\\sqrt{x+3}-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
Ấy chết! Sai ngu ở pt c rồi. Không có nghiệm \(x=1\) nha bạn.
5.
ĐKXĐ: ...
\(\Leftrightarrow3x^2-14x-5+\sqrt{3x+1}-4+1-\sqrt{6-x}=0\)
\(\Leftrightarrow\left(3x+1\right)\left(x-5\right)+\frac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\frac{x-5}{1+\sqrt{6-x}}=0\)
\(\Leftrightarrow\left(x-5\right)\left(3x+1+\frac{3}{\sqrt{3x+1}+4}+\frac{1}{1+\sqrt{6-x}}\right)=0\)
\(\Leftrightarrow x=5\)
6.
ĐKXĐ: \(-4\le x\le4\)
\(\Leftrightarrow\frac{\left(\sqrt{x+4}-2\right)\left(\sqrt{x+4}+2\right)\left(\sqrt{4-x}+2\right)}{\sqrt{x+4}+2}=2x\)
\(\Leftrightarrow\frac{x\left(\sqrt{4-x}+2\right)}{\sqrt{x+4}+2}=2x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\frac{\sqrt{4-x}+2}{\sqrt{x+4}+2}=2\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt{4-x}+2=2\sqrt{x+4}+4\)
\(\Leftrightarrow2\sqrt{x+4}-\frac{4}{5}+\frac{14}{5}-\sqrt{4-x}=0\)
\(\Leftrightarrow\frac{2\left(x+4-\frac{4}{25}\right)}{\sqrt{x+4}+\frac{2}{5}}+\frac{\frac{196}{25}-4+x}{\frac{14}{5}+\sqrt{4-x}}=0\)
\(\Leftrightarrow\left(x-\frac{96}{25}\right)\left(\frac{2}{\sqrt{x+4}+\frac{2}{5}}+\frac{1}{\frac{14}{5}+\sqrt{4-x}}\right)=0\)
\(\Rightarrow x=\frac{96}{25}\)
1.
Bạn coi lại đề
2.
ĐKXĐ: \(1\le x\le2\)
Nhận thấy \(\sqrt{x+2}+\sqrt{x-1}>0;\forall x\) , nhân 2 vế của pt với nó:
\(\left(\sqrt{x+2}+\sqrt{x-1}\right)\left(\sqrt{x+2}-\sqrt{x-1}\right)\left(\sqrt{2-x}+1\right)=\sqrt{x+2}+\sqrt{x-1}\)
\(\Leftrightarrow3\left(\sqrt{2-x}+1\right)=\sqrt{x+2}+\sqrt{x-1}\)
\(\Leftrightarrow3\sqrt{2-x}+3=\sqrt{x+2}+\sqrt{x-1}\)
\(\Leftrightarrow3\sqrt{2-x}+2-\sqrt{x+2}+1-\sqrt{x-1}=0\)
\(\Leftrightarrow3\sqrt{2-x}+\frac{2-x}{2+\sqrt{x+2}}+\frac{2-x}{1+\sqrt{x-1}}=0\)
\(\Leftrightarrow\sqrt{2-x}\left(3+\frac{\sqrt{2-x}}{2+\sqrt{x+2}}+\frac{\sqrt{2-x}}{1+\sqrt{x-1}}\right)=0\)
\(\Leftrightarrow\sqrt{2-x}=0\Rightarrow x=2\)
a/ \(1-16x^2\ge0\Rightarrow x^2\le16\Rightarrow-\frac{1}{4}\le x\le\frac{1}{4}\)
b/ \(\left\{{}\begin{matrix}x^2-3\ge0\\x^2-3\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge\sqrt{3}\\x\le-\sqrt{3}\end{matrix}\right.\\x\ne\pm2\end{matrix}\right.\)
c/ \(8x-x^2-15\ge0\Rightarrow3\le x\le5\)
d/ Hàm số xác định với mọi x
e/ \(\left\{{}\begin{matrix}x\ge\frac{1}{2}\\x\ne1\end{matrix}\right.\)
f/ \(\left\{{}\begin{matrix}-4\le x\le4\\x>-\frac{1}{2}\\\left[{}\begin{matrix}x\ge4+\sqrt{2}\\x\le4-\sqrt{2}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow-\frac{1}{2}< x\le4-\sqrt{2}\)
1) \(\sqrt{2-3x}+\sqrt{8-12x}=3\) (1) ĐKXĐ: \(x\le\dfrac{2}{3}\)
(1)\(\Leftrightarrow\sqrt{2-3x}+\sqrt{4\left(2-3x\right)}=3\)
\(\Leftrightarrow\sqrt{2-3x}+2\sqrt{2-3x}=3\)
\(\Leftrightarrow3\sqrt{2-3x}=3\)
\(\Leftrightarrow\sqrt{2-3x}=1\)
\(\Leftrightarrow2-3x=1\)
\(\Leftrightarrow x=\dfrac{1}{3}\) (Thỏa mãn)
Vậy \(x=\dfrac{1}{3}\) để \(\sqrt{2-3x}+\sqrt{8-12x}=3\)
2) \(4\sqrt{2x}+10\sqrt{8x}-9\sqrt{8x}+20=-10\) (2) ĐKXĐ: \(x\ge0\)
(2)\(\Leftrightarrow4\sqrt{2x}+20\sqrt{2x}-18\sqrt{2x}=-30\)
\(\Leftrightarrow6\sqrt{2x}=-30\)
\(\Leftrightarrow\sqrt{2x}=-5\)
Vì \(\sqrt{2x}\ge0\) với mọi x
\(\Rightarrow\) Không có giá trị của x để \(4\sqrt{2x}+10\sqrt{8x}-9\sqrt{8x}+20=-10\)
<=>3\(\sqrt{2x}\)-20\(\sqrt{2x}\)+21\(\sqrt{2x}\)=28
<=>4\(\sqrt{2x}\)=28
<=>\(\sqrt{2x}\)=7
<=>2x=14
<=>x=7
\(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28\)
\(3\sqrt{2x}-5\sqrt{8}.\sqrt{x}+7\sqrt{18x}=28\)
\(3\sqrt{2x}-5.2\sqrt{2}.\sqrt{x}+7\sqrt{18x}=28\)
\(3\sqrt{2x}-5.2\sqrt{2}.\sqrt{x}+7.\sqrt{18}.\sqrt{x}=28\)
\(3\sqrt{2x}-5.2\sqrt{2}.\sqrt{x}+7.3\sqrt{2}.\sqrt{x}=28\)
\(3\sqrt{2x}-5.2\sqrt{2x}+7.3\sqrt{2x}=28\)
\(3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28\)
\(14\sqrt{2x}=28\)
\(392x=784\)
\(x=\frac{784}{392}=2\)
\(\Leftrightarrow2\sqrt{2x}-6\sqrt{2x}-\sqrt{2x}=-10\)
\(\Leftrightarrow5\sqrt{2x}=10\)
=>2x=4
hay x=2