Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ : \(x\ge3\)
\(\sqrt{8+\sqrt{x-3}}+\sqrt{5+\sqrt{x-3}}\ge\sqrt{8}+\sqrt{5}>2\sqrt{8.5}=4\sqrt{10}>4\sqrt{\frac{25}{16}}=5\)
pt vô nghiệm
PS : làm thử thui chưa bít đúng sai nhé
Nhìn vế trái \(\ge\sqrt{8}+\sqrt{5}>5\) là biết pt vô ngiệm rồi
Tham khảo:
1) Giải phương trình : \(11\sqrt{5-x}+8\sqrt{2x-1}=24+3\sqrt{\left(5-x\right)\left(2x-1\right)}\) - Hoc24
1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))
\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)
\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)
\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)
Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)
2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)
\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)
\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)
\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)
Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)
\(\Rightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x=2\left(tm\right)\)
Vậy pt có no x=2
c: \(x^2-6\sqrt{x^2+5}+x=2\sqrt{x-1}-14\)
=>\(x^2-4-6\left(\sqrt{x^2+5}-3\right)+x-2-2\sqrt{x-1}+2=0\)
=>\(\left(x-2\right)\left(x+2\right)-6\cdot\dfrac{x^2+5-9}{\sqrt{x^2+5}+3}+\left(x-2\right)-2\cdot\dfrac{x-1-1}{\sqrt{x-1}+1}=0\)
=>\(\left(x-2\right)\left(x+2\right)-\dfrac{6}{\sqrt{x^2+5}+3}\cdot\left(x-2\right)\left(x+2\right)+\left(x-2\right)-2\cdot\dfrac{x-2}{\sqrt{x-1}+1}=0\)
=>\(\left(x-2\right)\left[\left(x+2\right)-\dfrac{6}{\sqrt{x^2+5}+3}\cdot\left(x+2\right)+1-\dfrac{2}{\sqrt{x-1}+1}\right]=0\)
=>x-2=0
=>x=2
d: \(x^2-\sqrt{\left(x^2-8\right)\left(x-2\right)}+x=\sqrt{x^2-8}+\sqrt{x-2}+9\)
=>\(x^2-9-\sqrt{\left(x^2-8\right)\left(x-2\right)}+x-\sqrt{x^2-8}-\sqrt{x-2}=0\)
=>\(\Leftrightarrow\left(x-3\right)\left(x+3\right)-\sqrt{x^3-2x^2-8x+16}+x-3+1-\sqrt{x^2-8}+2-\sqrt{x-2}=0\)
=>\(\left(x-3\right)\left(x+3\right)+\left(x-3\right)-\sqrt{x^3-2x^2-8x+16}+1+\dfrac{1-x^2+8}{1+\sqrt{x^2-8}}+1-\sqrt{x-2}=0\)
=>\(\left(x-3\right)\left(x+4\right)-\dfrac{x^3-2x^2-8x+16-1}{\sqrt{x^3-2x^2-8x+16}+1}-\dfrac{\left(x-3\right)\left(x+3\right)}{\sqrt{x^2-8}+1}+\dfrac{1-x+2}{1+\sqrt{x-2}}=0\)
=>\(\left(x-3\right)\left(x+4\right)-\dfrac{x^3-2x^2-8x+15}{\sqrt{x^3-2x^2-8x+16}+1}-\dfrac{\left(x-3\right)\left(x+3\right)}{\sqrt{x^2-8}+1}-\dfrac{x-3}{1+\sqrt{x-2}}=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+4\right)-\dfrac{\left(x-3\right)\left(x^2+x-5\right)}{\sqrt{x^3-2x^2-8x+16}+1}-\dfrac{\left(x-3\right)\left(x+3\right)}{\sqrt{x^2-8}+1}-\dfrac{x-3}{1+\sqrt{x-2}}=0\)
\(\Leftrightarrow\left(x-3\right)\left[\left(x+4\right)-\dfrac{x^2+x-5}{\sqrt{x^3-2x^2-8x+16}+1}-\dfrac{x+3}{\sqrt{x^2-8}+1}-\dfrac{1}{\sqrt{x-2}+1}\right]=0\)
=>x-3=0
=>x=3
a) Ta có: \(\sqrt{25x+75}+2\sqrt{9x+27}=5\sqrt{x+3}+18\)
\(\Leftrightarrow5\sqrt{x+3}+6\sqrt{x+3}-5\sqrt{x+3}=18\)
\(\Leftrightarrow\sqrt{x+3}=3\)
\(\Leftrightarrow x+3=9\)
hay x=6
b) Ta có: \(\sqrt{4x-8}-14\sqrt{\dfrac{x-2}{49}}=\sqrt{9x-18}+8\)
\(\Leftrightarrow2\sqrt{x-2}-2\sqrt{x-2}-3\sqrt{x-2}=8\)
\(\Leftrightarrow-3\sqrt{x-2}=8\)(Vô lý)
\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8+6\sqrt{x-1}}=5\)
\(\Leftrightarrow\sqrt{\left(2-\sqrt{x-1}\right)^2}+\sqrt{\left(3+\sqrt{x-1}\right)^2}=5\)
\(\Leftrightarrow|2-\sqrt{x-1}|+3+\sqrt{x-1}=5\)
\(\Leftrightarrow\orbr{\begin{cases}2-\sqrt{x-1}+\sqrt{x-1}=2\\\sqrt{x-1}-2+\sqrt{x-1}=2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}1\le x\le5\\x=5\end{cases}}\)
\(\Rightarrow1\le x\le5\)
\(ĐK:x\ge0\\ PT\Leftrightarrow\left(\sqrt{8+\sqrt{x}}-3\right)+\left(\sqrt{5-\sqrt{x}}-2\right)=0\\ \Leftrightarrow\dfrac{\sqrt{x}-1}{\sqrt{8+\sqrt{x}}+3}+\dfrac{-\sqrt{x}+1}{\sqrt{5-\sqrt{x}}+2}=0\\ \Leftrightarrow\left(\sqrt{x}-1\right)\left(\dfrac{1}{\sqrt{8+\sqrt{x}}+3}-\dfrac{1}{\sqrt{5-\sqrt{x}}+2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\\dfrac{1}{\sqrt{8+\sqrt{x}}+3}-\dfrac{1}{\sqrt{5-\sqrt{x}}+2}=0\left(vô.n_0,\forall x\ge0\right)\end{matrix}\right.\)
Vậy PT có nghiệm duy nhất \(x=1\)