\(\sqrt{8-\sqrt{x-3}}+\sqrt{5-\sqrt{x-3}}=5\)=5

giúp mình vs mình đang cần gấp tks<...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2017

\(\sqrt{242}.\sqrt{26}.\sqrt{130}.\sqrt{0,9}-\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)\)

\(=\sqrt{121}.\sqrt{2}.\sqrt{2}.\sqrt{13}.\sqrt{13}.\sqrt{10}.\sqrt{0,9}-\left(2-1\right)\)

\(=11.2.13.\sqrt{9}-1=286.3-1=857\)

6 tháng 8 2017

\(\frac{3-\sqrt{6}}{\sqrt{12}-\sqrt{8}}-\frac{\sqrt{15}-\sqrt{5}}{2\sqrt{12}-4}+\frac{\sqrt{17-4\sqrt{15}}}{4}\)

\(=\frac{\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)}{2\left(\sqrt{3}-\sqrt{2}\right)}-\frac{\sqrt{5}\left(\sqrt{3}-1\right)}{4\left(\sqrt{3}-1\right)}+\frac{\sqrt{\left(2\sqrt{3}-\sqrt{5}\right)^2}}{4}\)

\(=\frac{\sqrt{3}}{2}-\frac{\sqrt{5}}{4}+\frac{2\sqrt{3}-\sqrt{5}}{4}\)

\(=\sqrt{3}-\frac{\sqrt{5}}{4}\)

30 tháng 8 2020

Bài làm:

Ta có: \(\sqrt{7+\sqrt{2x}}=3+\sqrt{5}\)

\(\Leftrightarrow7+\sqrt{2x}=\left(3+\sqrt{5}\right)^2\)

\(\Leftrightarrow7+\sqrt{2x}=14+6\sqrt{5}\)

\(\Leftrightarrow\sqrt{2x}=7+6\sqrt{5}\)

\(\Leftrightarrow2x=\left(7+6\sqrt{5}\right)^2\)

\(\Leftrightarrow2x=229+84\sqrt{5}\)

\(\Rightarrow x=\frac{229+84\sqrt{5}}{2}\)

a).  \(\frac{1}{\sqrt{5-\sqrt{7}}}+\frac{\sqrt{5}}{\sqrt{5+\sqrt{7}}})-1\)

\(\Leftrightarrow\frac{1}{\sqrt{25-\sqrt{49}}}-1\)

\(\Leftrightarrow\frac{1}{\sqrt{25-7}}-1\)

\(\Leftrightarrow\frac{1}{\sqrt{18}}-1\)

\(\Leftrightarrow\frac{1}{3\sqrt{2}}-1\) 

ĐẾN ĐÂY BN QUY ĐỒNG LÀ ĐC

\(\sqrt{\left(3-\sqrt{5}\right)^2}+\sqrt{6-2\sqrt{5}}\)

\(=3-\sqrt{5}+\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=3-\sqrt{5}+\sqrt{5}-1=2\)

\(\sqrt{9+4\sqrt{5}}=\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{5}\)

\(=\sqrt{5}+2-\sqrt{5}=2\)

Chúc học tốt!!!!!!!!!!!!!

7 tháng 12 2016

Bài 1:

a)Đk:\(x\ge\frac{3}{2}\)

\(pt\Leftrightarrow3-x=-\sqrt{2x-3}\)

Bình phương 2 vế ta có:

\(\left(3-x\right)^2=\left(-\sqrt{2x-3}\right)^2\)

\(\Leftrightarrow x^2-6x+9=2x-3\)

\(\Leftrightarrow x^2-8x+12=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-6\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=6\end{array}\right.\).Thay vào thấy x=2 ko thỏa mãn

Vậy x=6

8 tháng 12 2016

b)Đk:\(x\ge1\)

\(pt\Leftrightarrow\sqrt{x-1}=\sqrt{3x-2}+\sqrt{5x-1}\)

Bình phương 2 vế của pt ta có:

\(\left(\sqrt{x-1}\right)^2=\left(\sqrt{3x-2}+\sqrt{5x-1}\right)^2\)

\(\Leftrightarrow x-1=\left(3x-2\right)+\left(5x-1\right)+2\sqrt{\left(3x-2\right)\left(5x-1\right)}\)

\(\Leftrightarrow x-1=8x-3+2\sqrt{\left(3x-2\right)\left(5x-1\right)}\)

\(\Leftrightarrow2-7x=2\sqrt{\left(3x-2\right)\left(5x-1\right)}\)

Bình phương 2 vế của pt ta có:

\(\left(2-7x\right)^2=\left[2\sqrt{\left(3x-2\right)\left(5x-1\right)}\right]^2\)

\(\Leftrightarrow49x^2-28x+4=60x^2-52x+8\)

\(\Leftrightarrow-11x^2+24x-4=0\)

\(\Leftrightarrow\left(2-x\right)\left(11x-2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=\frac{2}{11}\end{array}\right.\) (Loại)

Vậy pt vô nghiệm

 

 

 

14 tháng 8 2017

a) \(\sqrt{39-12\sqrt{3}}+\sqrt{21-12\sqrt{3}}\)

\(=\sqrt{36-12\sqrt{3}+3}+\sqrt{9-12\sqrt{3}+12}\)

\(=\sqrt{\left(6-\sqrt{3}\right)^2}+\sqrt{\left(3-\sqrt{12}\right)^2}\)

\(=6-\sqrt{3}+\sqrt{12}-3=3+\sqrt{3}\)

b) \(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\)

\(=\frac{\sqrt{6-2\sqrt{5}}+\sqrt{6+2\sqrt{5}}}{\sqrt{2}}\)

\(=\frac{\sqrt{5-2\sqrt{5}+1}+\sqrt{5+2\sqrt{5}+1}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(\sqrt{5}-1\right)^2}+\sqrt{\left(\sqrt{5}+1\right)^2}}{\sqrt{2}}\)

\(=\frac{\sqrt{5}-1+\sqrt{5}+1}{\sqrt{2}}=\frac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)

1 tháng 9 2020

a) \(\sqrt{3+\sqrt{5}}\left(\sqrt{10}+\sqrt{2}\right)\left(3-\sqrt{5}\right)\)

\(=\sqrt{3+\sqrt{5}}.\sqrt{3-\sqrt{5}}.\sqrt{3-\sqrt{5}}.\left(\sqrt{10}+\sqrt{2}\right)\)

\(=\left(9-5\right).\sqrt{3-\sqrt{5}}.\sqrt{2}\left(\sqrt{5}+1\right)\)

\(=4.\sqrt{6-2\sqrt{5}}.\left(\sqrt{5}+1\right)\)

\(=4.\sqrt{5-2\sqrt{5}+1}.\left(\sqrt{5}+1\right)\)

\(=4.\sqrt{\left(\sqrt{5}-1\right)^2}.\left(\sqrt{5}+1\right)\)

\(=4.\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)=4.\left(5-1\right)=16\)

b) \(2\sqrt{4+\sqrt{6-2\sqrt{5}}}.\left(\sqrt{10}-\sqrt{2}\right)\)

\(=2\sqrt{4+\sqrt{5-2\sqrt{5}+1}}.\left(\sqrt{10}-\sqrt{2}\right)\)

\(=2\sqrt{4+\sqrt{\left(\sqrt{5}-1\right)^2}}.\left(\sqrt{10}-\sqrt{2}\right)\)

\(=2\sqrt{3+\sqrt{5}}.\sqrt{2}.\left(\sqrt{5}-\sqrt{1}\right)\)

\(=2\sqrt{6+2\sqrt{5}}.\left(\sqrt{5}-1\right)\)

\(=2\sqrt{5+2\sqrt{5}+1}.\left(\sqrt{5}-1\right)\)

\(=2\sqrt{\left(\sqrt{5}+1\right)^2}.\left(\sqrt{5}-1\right)=2.\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)\)

\(=2.\left(5-1\right)=2.4=8\)

27 tháng 7 2016

a) \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

b)\(\frac{x-4}{2\left(\sqrt{x}+2\right)}\) (ĐK:x\(\ge0\))

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{2\left(\sqrt{x}+2\right)}\)

\(=\frac{\sqrt{x}-2}{2}\)

c)\(\frac{x-5\sqrt{x}+6}{3\sqrt{x}-6}\) (ĐK:x\(\ge0;x\ne4\))

\(=\frac{x-3\sqrt{x}-2\sqrt{x}+6}{3\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)-2\left(\sqrt{x}-3\right)}{3\left(\sqrt{x}-2\right)}\)

\(=\frac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}{3\left(\sqrt{x}-2\right)}\)

\(=\frac{\sqrt{x}-3}{3}\)

27 tháng 7 2016

b) Tử \(x-4=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\) (hằng đăngt thức số 3 )