Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}=\sqrt{25-2\cdot5\cdot2\sqrt{6}+24}+\sqrt{25-2\cdot5\cdot2\sqrt{6}+24}=\sqrt{\left(5+2\sqrt{6}\right)^2}+\sqrt{\left(5-2\sqrt{6}\right)^2}=5+2\sqrt{6}+5-2\sqrt{6}=10\) ---
\(\sqrt{13-\sqrt{160}}+\sqrt{53+4\sqrt{90}}=\sqrt{8-2\sqrt{5}\cdot\sqrt{8}+5}+\sqrt{45+2\cdot3\sqrt{5}\cdot\sqrt{8}+8}=\sqrt{\left(\sqrt{8}-\sqrt{5}\right)^2}+\sqrt{\left(3\sqrt{5}+\sqrt{8}\right)^2}=\sqrt{8}-\sqrt{5}+3\sqrt{5}+\sqrt{8}=2\sqrt{8}+2\sqrt{5}\)
---
\(\sqrt{11-6\sqrt{2}}+\sqrt{3-2\sqrt{2}}=\sqrt{9-2\cdot3\cdot\sqrt{2}+2}+\sqrt{2-2\sqrt{2}+1}=\sqrt{\left(3-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}-1\right)^2}=3-\sqrt{2}+\sqrt{2}-1=2\)
---
\(\sqrt{15-6\sqrt{6}}+\sqrt{35-12\sqrt{6}}=\sqrt{9-2\cdot3\cdot\sqrt{6}+6}+\sqrt{27-2\cdot\sqrt{27}\cdot\sqrt{8}+8}=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(3\sqrt{3}-2\sqrt{2}\right)^2}=3-\sqrt{6}+3\sqrt{3}-2\sqrt{2}\)
---
\(\sqrt{17-3\sqrt{32}}+\sqrt{17+3\sqrt{32}}=\sqrt{9-2\cdot3\cdot2\sqrt{2}+8}+\sqrt{9+2\cdot2\cdot2\sqrt{2}+8}=\sqrt{\left(3-2\sqrt{2}\right)^2}+\sqrt{\left(3+2\sqrt{2}\right)^2}=3-2\sqrt{2}+3+2\sqrt{2}=6\)
---
Ta có:
\(a.\)Ta có:
\(7>4\) nên \(\sqrt{7}>\sqrt{4}\)
\(\Rightarrow\) \(\sqrt{7}>2\) \(\left(1\right)\)
và \(5>4\) nên \(\sqrt{5}>\sqrt{4}\)
\(\Rightarrow\) \(\sqrt{5}>2\) \(\left(2\right)\)
Mặt khác, ta lại có: \(\sqrt{12}< \sqrt{16}=4\) \(\left(i\right)\)
Do đó, từ hai bđt \(\left(1\right)\) và \(\left(2\right)\) , kết hợp với chú ý \(\left(i\right)\) ta suy ra được:
\(\sqrt{7}+\sqrt{5}>\sqrt{12}\)
So sánh
\(3\sqrt{3}-2\sqrt{2}vs2\)
\(\sqrt{7}+\sqrt{5}vs\sqrt{49}\)
\(\sqrt{2}+\sqrt{11}vs\sqrt{3}+5\)
Bạn bình phương các vế rồi rút gọn số nguyên, so sánh phần còn lại
a) \(\sqrt{2017}-2\sqrt{2016}=\sqrt{2017}-\sqrt{8064}< 0< \sqrt{2016}\)
b) \(\sqrt{10}+\sqrt{17}+1>\sqrt{9}+\sqrt{16}+1=8=\sqrt{64}>\sqrt{61}\)
c) \(\left(\sqrt{2016}+\sqrt{2014}\right)^2=4030+\sqrt{2014.2016}\)
\(\left(2\sqrt{2015}^2\right)=4030+\sqrt{2015.2015}\)
C/m được: \(\sqrt{2014.2016}< \sqrt{2015.2015}\)
\(\Rightarrow\left(\sqrt{2016}+\sqrt{2014}\right)^2< \left(2\sqrt{2015}\right)^2\)
\(\Rightarrow\sqrt{2014}+\sqrt{2016}< 2\sqrt{2015}\)
d) \(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}=7=8-1=\sqrt{64}-1< \sqrt{65}-1\)
a)\(\Leftrightarrow\)\(7\sqrt{x-2}-2\sqrt{x-2}-3\sqrt{x-2}=8\)
\(\Leftrightarrow\) \(3\sqrt{x-2}=8\)
\(\Leftrightarrow\) \(\sqrt{x-2}=24\)
\(\Leftrightarrow\)\(x-2=576\)\(\Leftrightarrow x=578\)
c)\(\Leftrightarrow GTTĐ\left(x-1\right)=\sqrt{2}-1\)\(TH1:x-1>0\)
\(\Rightarrow x-1=\sqrt{2}-1\)\(\Leftrightarrow x=\sqrt{2}\)
\(TH2:x-1< 0\)
\(\Rightarrow1-x=\sqrt{2}-1\)
\(\Leftrightarrow x=2+\sqrt{2}\)
d)\(TH1:x-10=0\Rightarrow x=10\)
\(TH2:\sqrt{x-4}=0\Rightarrow x=4\)
câu b) thì mik cần thêm time
Chờ từ trưa không idol nào đụng thì thôi em xin vậy :))
BT1:
Ta có: \(A\cdot B=\sqrt{4+\sqrt{10+2\sqrt{5}}}\cdot\sqrt{4-\sqrt{10+2\sqrt{5}}}\)
\(=\sqrt{16-10-2\sqrt{5}}\)
\(=\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}-1\)
Từ đó thay vào: \(\left(A-B\right)^2\)
\(=A^2-2AB+B^2\)
\(=4+\sqrt{10+2\sqrt{5}}-2\left(\sqrt{5}-1\right)+4-\sqrt{10+2\sqrt{5}}\)
\(=10-2\sqrt{5}\)
\(\Rightarrow A-B=\sqrt{10-2\sqrt{5}}\)
BT2:
Đặt \(B=\sqrt{4+\sqrt{7}}-\sqrt{4-\sqrt{7}}\)
\(\Leftrightarrow B^2=4+\sqrt{7}-2\sqrt{\left(4+\sqrt{7}\right)\left(4-\sqrt{7}\right)}+4-\sqrt{7}\)
\(=8-2\sqrt{16-7}=8-2\cdot3=2\)
\(\Rightarrow B=\sqrt{2}\)
\(\Rightarrow A=B-\sqrt{2}=\sqrt{2}-\sqrt{2}=0\)
BT3:
đk: \(\orbr{\begin{cases}x\ge2\\x< -2\end{cases}}\)
\(C=\frac{x+2+\sqrt{x^2-4}}{x+2-\sqrt{x^2-4}}+\frac{x+2-\sqrt{x^2-4}}{x+2+\sqrt{x^2-4}}\)
\(C=\frac{\left(x+2+\sqrt{x^2-4}\right)^2}{\left(x+2\right)^2-\left(x^2-4\right)}+\frac{\left(x+2-\sqrt{x^2-4}\right)^2}{\left(x+2\right)^2-\left(x^2-4\right)}\)
\(C=\frac{\left(x+2\right)^2+2\left(x+2\right)\sqrt{x^2-4}+x^2-4+\left(x+2\right)^2-2\left(x+2\right)\sqrt{x^2-4}+x^2-4}{x^2+4x+4-x^2+4}\)
\(C=\frac{2x^2+8x+8+2x^2-8}{4x+8}\)
\(C=\frac{4x^2+8x}{4x+8}=x\)
Vậy C = x
\(\sqrt{5-\sqrt{21}}=\sqrt{\frac{1}{2}}.\sqrt{10-2\sqrt{21}}=\sqrt{\frac{1}{2}}.\sqrt{3-2\sqrt{3}\sqrt{7}+7}=\sqrt{\frac{1}{2}}\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}=\sqrt{\frac{1}{2}}.\sqrt{7}-\sqrt{\frac{1}{2}}.\sqrt{3}=\sqrt{3,5}-\sqrt{1,5}\)
\(\sqrt{7+3\sqrt{5}}=\sqrt{\frac{1}{2}\left(14+2.3\sqrt{5}\right)}=\sqrt{\frac{1}{2}\left(5+2.3\sqrt{5}+3^2\right)}=\sqrt{\frac{1}{2}\left(3+\sqrt{5}\right)^2}=\sqrt{\frac{1}{2}}\left(3+\sqrt{5}\right)=\sqrt{4,5}+\sqrt{2,5}\)
\(\sqrt{49+5\sqrt{96}}=\sqrt{49+2.2.5\sqrt{6}}=\sqrt{2^2.6+2.2.5\sqrt{6}+5^2}=\sqrt{\left(5+2\sqrt{6}\right)^2}=5+2\sqrt{6}\)
\(\sqrt{5-\sqrt{21}}=\frac{\sqrt{10-2\sqrt{21}}}{\sqrt{2}}=\frac{\sqrt{7-2\sqrt{7\cdot3}+3}}{\sqrt{2}}=\frac{\sqrt{\left(\sqrt{7}-\sqrt{3}\right)^2}}{\sqrt{2}}=\frac{\sqrt{7}-\sqrt{3}}{\sqrt{2}}\)
\(\sqrt{7+3\sqrt{5}}=\frac{\sqrt{14+6\sqrt{5}}}{\sqrt{2}}=\frac{\sqrt{9+2\cdot3\sqrt{5}+4}}{\sqrt{2}}=\frac{\sqrt{\left(3+\sqrt{5}\right)^2}}{\sqrt{2}}=\frac{3+\sqrt{5}}{\sqrt{2}}\)
\(\sqrt{49+5\sqrt{96}}=\sqrt{49+5\sqrt{4\cdot24}}=\sqrt{25+2\cdot5\sqrt{24}+24}=\sqrt{\left(5+\sqrt{24}\right)^2}=5+\sqrt{24}\)
\(\sqrt{51-7\sqrt{8}}=\sqrt{51-7\sqrt{2^2\cdot2}}=\sqrt{49-2\cdot7\sqrt{2}+2}=\sqrt{\left(7+\sqrt{2}\right)^2}=7+\sqrt{2}\)
\(\sqrt{28+5\sqrt{12}}=\sqrt{28+5\sqrt{2^2\cdot3}}=\sqrt{25+2\cdot5\sqrt{3}+3}=\sqrt{\left(5+\sqrt{3}\right)^2}=5+\sqrt{3}\)
\(\sqrt{12-3\sqrt{12}}=\sqrt{12-3\sqrt{2^2\cdot3}}=\sqrt{9-2\cdot3\sqrt{3}+3}=\sqrt{\left(3+\sqrt{3}\right)^2}=3+\sqrt{3}=\sqrt{3}\left(\sqrt{3}+1\right)\)
Chúc bạn học tốt nha.
\(\sqrt{7}+\sqrt{5}< \sqrt{7}+\sqrt{7}=2\sqrt{7}\)
Mà \(2\sqrt{7}=\sqrt{28}< \sqrt{49}\) nên \(\sqrt{7}+\sqrt{5}< \sqrt{49}\)