K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2019

Đặt \(\sqrt{5x^2+6x+5}=a,4x=b\left(a\ge0\right)\)

Khi đó Pt

<=> \(a\left(a^2+1\right)=b\left(b^2+1\right)\)

<=>\(\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)

MÀ \(a^2+ab+b^2+1>0\)

=> \(a=b\)

=> \(\sqrt{5x^2+6x+5}=4x\)

=> \(\hept{\begin{cases}x\ge0\\11x^2-6x-5=0\end{cases}}\)

=>\(x=1\)

Vậy x=1

26 tháng 6 2023

Yêu cầu?

26 tháng 6 2023

TÌM ĐKXĐ ạ

28 tháng 1 2019

Em xin phép làm bài EZ nhất :)

4,ĐK :\(\forall x\in R\)

Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))

\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)

\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)

\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy ....

14 tháng 4 2019

đúng bạn ạ

NV
6 tháng 4 2019

a/

\(\left(2x-1\right)\left(3x-1\right)\left(x-2\right)\left(x-3\right)=4x^2\)

\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(3x-1\right)\left(x-3\right)=4x^2\)

\(\Leftrightarrow\left(2x^2-5x+2\right)\left(3x^2-10x+3\right)=4x^2\)

\(\Leftrightarrow\left(6x^2-15x+6\right)\left(6x^2-20x+6\right)=24x^2\)

Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\):

\(\left(6x+\frac{6}{x}-15\right)\left(6x+\frac{6}{x}-20\right)=24\)

Đặt \(6x+\frac{6}{x}-20=a\Rightarrow6x+\frac{6}{x}-15=a+5\)

\(\left(a+5\right)a-24=0\Leftrightarrow a^2+5a-24=0\) \(\Rightarrow\left[{}\begin{matrix}a=3\\a=-8\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}6x+\frac{6}{x}-20=3\\6x+\frac{6}{x}-20=-8\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}6x^2-23x+6=0\\6x^2-12x+6=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{23\pm\sqrt{385}}{12}\\x=1\end{matrix}\right.\)

NV
6 tháng 4 2019

b/

\(3x^2-10x+6-\sqrt{2\left(x^4+4x^2+4-4x^2\right)}=0\)

\(\Leftrightarrow x^2-6x+2+2\left(x^2-2x+2\right)-\sqrt{2\left(x^2-2x+2\right)\left(x^2+2x+2\right)}=0\)

\(\Leftrightarrow x^2-6x+2+\sqrt{2\left(x^2-2x+2\right)}\left(\sqrt{2\left(x^2-2x+2\right)}-\sqrt{x^2+2x+2}\right)=0\)

\(\Leftrightarrow x^2-6x+2+\sqrt{2\left(x^2-2x+2\right)}\left(\frac{x^2-6x+2}{\sqrt{2\left(x^2-2x+2\right)}+\sqrt{x^2+2x+2}}\right)=0\)

\(\Leftrightarrow\left(x^2-6x+2\right)\left(1+\frac{\sqrt{2\left(x^2-2x+2\right)}}{\sqrt{2\left(x^2-2x+2\right)}+\sqrt{x^2+2x+2}}\right)=0\)

\(\Leftrightarrow x^2-6x+2=0\) (ngoặc to phía sau luôn dương)

\(\Rightarrow\left[{}\begin{matrix}x=3+\sqrt{7}\\x=3-\sqrt{7}\end{matrix}\right.\)

18 tháng 9 2015

a) Điều kiện xác định \(16x+8\ge0\Leftrightarrow x\ge-\frac{1}{2}.\)

Theo bất đẳng thức Cô-Si cho 4 số ta được 

\(4\sqrt[4]{16x+8}=4\sqrt[4]{2\cdot2\cdot2\cdot\left(2x+1\right)}\le2+2+2+2x+1=2x+7\)

Do vậy mà \(4x^3+4x^2-5x+9\le2x+7\Leftrightarrow\left(2x-1\right)^2\left(x+2\right)\le0\).

Vì \(x\ge-\frac{1}{2}\to x+2>0\to\left(2x-1\right)^2\le0\to x=\frac{1}{2}.\) 

b. Ta viết phương trình dưới dạng sau đây  \(9x^4-21x^3+27x^2+16x+16=0\Leftrightarrow3x^2\left(3x^2-7x+7\right)+4\left(x+2\right)^2=0\)

Vì \(3x^2-7x+7=\frac{36x^2-2\cdot6x\cdot7+49+35}{12}=\frac{\left(6x-7\right)^2+35}{12}>0\) nên vế trái dương, suy ra phương trinh vô nghiệm.

27 tháng 11 2018

Chia cả 2 vế cho x2

31 tháng 8 2020

1. \(x^3-6x^2+10x-4=0\)

<=> \(\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(2x-4\right)=0\)

<=>  \(\left(x-2\right)\left(x^2-4x+2\right)=0\)

<=> \(\orbr{\begin{cases}x=2\\x^2-4x+2=0\left(1\right)\end{cases}}\)

Giải pt (1): \(\Delta=\left(-4\right)^2-4.2=8>0\)

=> pt (1) có 2 nghiệm: \(x_1=\frac{4+\sqrt{8}}{2}=2+\sqrt{2}\)

\(x_2=\frac{4-\sqrt{8}}{2}=2-\sqrt{2}\)

31 tháng 8 2020

1) Ta có: \(x^3-6x^2+10x-4=0\)

       \(\Leftrightarrow\left(x^3-2x^2\right)-\left(4x^2-8x\right)+\left(2x-4\right)=0\)

       \(\Leftrightarrow x^2\left(x-2\right)-4x\left(x-2\right)+2\left(x-2\right)=0\)

       \(\Leftrightarrow\left(x^2-4x+2\right)\left(x-2\right)=0\)

   + \(x-2=0\)\(\Leftrightarrow\)\(x=2\)\(\left(TM\right)\)

   + \(x^2-4x+2=0\)\(\Leftrightarrow\)\(\left(x^2-4x+4\right)-2=0\)

                                             \(\Leftrightarrow\)\(\left(x-2\right)^2=2\)

                                             \(\Leftrightarrow\)\(x-2=\pm\sqrt{2}\)

                                             \(\Leftrightarrow\)\(\orbr{\begin{cases}x=2+\sqrt{2}\approx3,4142\left(TM\right)\\x=2-\sqrt{2}\approx0,5858\left(TM\right)\end{cases}}\)

Vậy \(S=\left\{0,5858;2;3,4142\right\}\)