Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Với \(-4\le x\le4\)
\(A=\sqrt{x^2+8x+16}+\sqrt{x^2-8x+16}\)
\(=\sqrt{\left(x+4\right)^2}+\sqrt{\left(x-4\right)^2}=\left|x+4\right|+\left|x-4\right|\)
b, \(B=\sqrt{9x^2-6x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(3x\right)^2-2.3x+1}+\sqrt{\left(2x\right)^2-2.2x.3x+3^2}\)
\(=\sqrt{\left(3x-1\right)^2}+\sqrt{\left(2x-3\right)^2}=\left|3x-1\right|+\left|2x-3\right|\)
Đặt \(a=\sqrt[3]{9+4\sqrt{5}};b=\sqrt[3]{9-4\sqrt{5}}\Rightarrow A=a+b\)
Ta có : \(A^3=\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)=a^3+b^3+3ab.A\)
\(=\left(9+4\sqrt{5}\right)+\left(9-4\sqrt{5}\right)+3\sqrt{\left(9-4\sqrt{5}\right)\left(9+4\sqrt{5}\right)}\)
\(\Rightarrow A=18+3A\Leftrightarrow A^3-3A-18\Leftrightarrow\left(A-3\right)\left(A^2+3A+6\right)\Rightarrow A=3\)